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ABSTRACT 

Moisture damage is one of the major problems that can be faced by a pavement during the 

design life.  It can tremendously reduce a pavement’s strength and consequently its life.  

Moisture sensitivity testing of asphalt mixtures is critical for ensuring performance 

expectations are met. Moisture susceptibility is most commonly tested using the modified 

Lottman test.  The shift towards mechanistic design calls for the utilization of a more 

fundamental test to evaluate moisture damage.  The evolution of unconfined dynamic modulus 

and creep (flow number) tests as performance tests for inclusion in the Superpave mix design 

process make these candidate tests for inclusion in moisture sensitivity testing. The challenge 

in moisture sensitivity testing is the ability to capture the various mechanisms that cause 

moisture damage. Previous research has recommended the use of the dynamic modulus test for 

moisture damage evaluation.  The dynamic modulus test results can be used to develop master 

curves that can be used to predict pavement performance at any temperature and/or frequency. 

An objective of this study was to identify the appropriate test that can identify whether a mix is 

moisture susceptible or not.  Indirect tensile test, dynamic modulus test and flow number test 

were investigated to satisfy this objective. Another objective was to use finite element 

modeling to evaluate the moisture susceptibility and variability of a mixture.  

In the present study, sixteen field procured mixtures were subjected to five different modes of 

moisture conditioning: 1. unconditioned without water submersion testing, 2. unconditioned 

with water submersion testing, 3. moisture saturation with water submersion testing, 4. 

moisture saturation with freeze/thaw conditioning without water submersion testing, and 5. 

moisture saturation with freeze/thaw conditioning and with water submersion testing. These 

samples were tested for flow number. 



www.manaraa.com

xvi 

 

 

 

Dynamic modulus tests were performed on both moisture conditioned and unconditioned 

samples. The results were used to develop mastercurves.  The dynamic modulus results were 

used as input to a finite element model in which stochastic variation of the results were 

incorporated in the model.  The model was validated by the results from the flow number test. 

The methodology was applied on sixteen projects and the results were compared to the results 

achieved using the AASHTO T283 methodology and dynamic modulus test results.  The 

dynamic modulus test results show consistency with AASHTO T283 in identifying moisture 

sensitivity of a mixture.  This dissertation outlines a method for evaluating hot mix asphalt 

moisture susceptibility utilizing dynamic modulus testing and is compatible with the proposed 

performance testing for accompanying Superpave volumetric mix design.  The results of the 

proposed mixture dynamic modulus moisture susceptibility method can also be used in the new 

M-E PDG for evaluating the moisture susceptibility effects of the tested mixtures.  This in part 

allows for the evaluation of this environmental effect in the M-E PDG. 

The results show that the dynamic modulus test has good potential to identify the moisture 

susceptibility of the material provided that it is combined with the field and loading conditions.  

The flow number test also showed good potential when it was analyzed using the Ohio State 

model.  The data showed consistency but a comparison to field performance is needed to 

identify whether the results are correlated to field performance or not. The finite element 

analysis showed that the results’ variability increase with moisture conditioning and that 

moisture conditioned samples are more susceptible to rutting. Finite element model is a good 

tool to be combined with the dynamic modulus test to be able to evaluate the moisture 

susceptibility based on site condition. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Pavements are subjected to a variety stresses during their operational lives. A properly 

designed pavement will perform adequately during its design life and the distresses will not 

exceed the allowable limits. A good design is one that provides the expected performance with 

appropriate economic considerations. One of the factors that lead to premature failure of 

pavements is moisture sensitivity. The presence of water in pavements can be detrimental if 

combined with other factors such as freeze-thaw cycling. Many factors can affect the moisture 

sensitivity of a mix, and can be divided into three main categories. The first category is the 

material properties, which include the physical and chemical properties of the asphalt and the 

aggregates. The second category is the mixture properties, which include asphalt content, film 

thickness, and the permeability of the mixture (interconnectivity of the air voids). The third 

category is the external factors; these factors include construction, traffic, and environmental 

factors (Santucci 2002).  

Moisture damage has been a major concern to asphalt technologists for many years. 

Researchers have been searching for a test that differentiates between good and poor 

performing asphalt concrete mixtures from stripping potential since the 1920’s (Solaimanian et 

al. 2003). Since the 1920’s, it has been known that the problem relates to the loss of adhesion 

between asphalt and aggregate and the loss of cohesion within the asphalt binder. The 

challenge has been to find a test that identifies moisture susceptible mixes (Solaimanian et al. 

2003). The standard test used to identify the moisture susceptibility of asphalt mixtures is the 

modified Lottman test, AASHTO T283. AASHTO T283 was used with Marshall mix design 

methodology and with the development of the Superpave mix design methodology, the same 

method was adopted with the modification of the compaction method. Although AASHTO 
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T283 has been used for several years as the standard test for moisture sensitivity, it assists in 

minimizing the problem and it does not appear to be a very accurate indicator of stripping 

(Brown et al. 2001). Two of the tests that have the potential to replace indirect tensile strength 

testing contained within AASHTO T283 are the dynamic modulus and flow number tests. The 

advantage of using these two tests is that they are performed by the Asphalt Mixture 

Performance Tester (AMPT) and are used to predict the mixture performance. An advantage of 

the dynamic modulus test is that it is the main input for level 1 design in the Mechanistic-

Empirical Pavement Design Guide (M-E PDG) (NCHRP 2004).  

The finite element method was introduced by R. Courant (1943). The use of the method has 

increased significantly with the advancement in computer technology. Currently, the method is 

used in several applications. Stochastic finite element analysis is a modification to the finite 

element method to include statistical variability in the finite element analysis. 

1.2 Problem statement 

AASHTO T283 is the standard test used in the moisture susceptibility evaluation of asphalt 

mixtures. The results of the test are not very representative of the expected behavior of asphalt 

mixtures. The dynamic modulus test measures a fundamental property of the mixture. The 

results of the dynamic modulus test can be used directly in the M-E PDG and are considered 

very good representation of the expected field performance of the mixture. Further research is 

still needed to study how the dynamic modulus results are affected by moisture. The flow 

number test was studied in NCHRP Report 589 (Solaimanian et al. 2007) as a candidate test for 

moisture susceptibility evaluation and the results of that research were not in favor of using the 

flow number test in moisture susceptibility evaluation. The results from the mechanistic tests 

can be used in the modeling of the pavement performance. This is done through finite element 

analysis of the pavement. Although the finite element method was used several times in 



www.manaraa.com

3 

 

 

 

modeling pavement performance, statistical distribution of the test results was not used in 

pavement modeling. 

1.3 Objectives 

This research has four main objectives. The first objective of is to evaluate the usefulness of the 

dynamic modulus and flow number tests in moisture susceptibility evaluation. The second 

objective is to compare the results to those achieved using the AASHTO T283 test. The third 

objective is to study the effect of different methods of sample conditioning and testing 

conditions on the material behavior. The fourth objective is to quantify the effect of the 

moisture damage on the pavement and to study the variability in the test data. 

1.4 Methodology and approach  

The first objective of this research was achieved by running dynamic modulus and flow 

number tests on sixteen field procured/laboratory compacted specimens at different 

conditioning/test conditions. The dynamic modulus test was performed on unconditioned 

samples and samples conditioned by moisture saturation with a freeze-thaw cycle at various 

frequencies and test temperatures. The same samples were then tested for flow number. The 

second objective was achieved by testing samples using the AASHTO T283 procedure and 

comparing the results to those achieved using the dynamic modulus and flow number tests. To 

fulfill the third objective, flow number testing was performed on samples with four different 

conditioning/testing conditions. The four conditions were: unconditioned without water 

submersion, moisture saturated with water submersion testing, moisture saturation with 

freeze/thaw conditioning without water submersion testing, and moisture saturation with 

freeze/thaw conditioning and with water submersion testing. Five of the sixteen mixes were 

tested under a fifth condition, which is unconditioned with water submersion to study the effect 

of the water submersion of the samples. The comparison between the results of the 
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unconditioned set of sample and the conditioned set was used to evaluate the moisture damage. 

The fourth objective was studied by performing a stochastic finite element analysis using the 

laboratory results to be able to quantify the moisture damage and the variability of the 

laboratory data. 

1.5 Hypothesis 

The laboratory testing was performed under two main hypotheses that were tested statistically. 

• The first hypothesis was that the dynamic modulus test results are directly 

affected by moisture conditioning of the samples. The effect of moisture was 

studied on the dynamic modulus value, the phase angle, and the combined 

effect of dynamic modulus and phase angle represented by the loss modulus 

and the storage modulus. 

• The second hypothesis was that although the flow number test is not 

recommended for the evaluation of the moisture susceptibility of an asphalt 

mixture, it can still have value by investigating other parameters that can be 

calculated from the test results. 

Some additional hypotheses were addressed by answering the following questions: 

• Which test procedure better simulates moisture damage: AASHTO T283, 

dynamic modulus, or flow number? 

• Do these HMA mixture tests rank the HMA mixtures the same? 

• Is there a difference between the results from the different conditioning/testing 

conditions? 

• Does the finite element analysis add value to the moisture study by 

quantifying the amount of damage the pavement is subjected to? 
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1.6 Significance of work 

The significance of this research work is that it employs tests that are commonly used in the 

asphalt industry and uses them to evaluate the moisture susceptibility of the mixes. The 

research also examines the tests from a perspective different from what was done in previous 

research. Finally the use of stochastic finite element analysis is not common in modeling 

asphalt pavement performance. This modeling will integrate the statistical properties of the 

tested material with the moisture conditioning effect. 

1.7 Dissertation organization 

This dissertation is divided into nine chapters. The first chapter is an introduction, which gives 

a brief background about the topic and a problem statement. In this chapter the research 

objectives and hypothesis are presented, the methodology is outlined, and the significance of 

the research is presented. Chapter 2 of this dissertation discusses past research and studies that 

have been related to moisture damage or moisture susceptibility. Included is a brief description 

of the research conducted along with major findings of the studies that directly apply to this 

research.   The chapter also includes a survey of the major research that was conducted in the 

field of asphalt concrete modeling. Chapter 3 outlines the experimental plan and procedures 

used to sample, prepare, and test specimens for this research. Chapter 4 presents the results of 

the dynamic modulus testing. Chapter 5 presents the results of the flow number testing with a 

selection of the parameter that best represents the moisture susceptibility of the mixes. Chapter 

6 presents the results from the AASHTO T283 testing. Chapter 7 presents a statistical analysis 

comparing the different tests and recommending the most appropriate test. The finite element 

analysis that was performed is presented in Chapter 8. The chapter includes the assumptions, 

formulation and results of the finite element analysis that was performed. Chapter 9 presents 

the summary, conclusions, and recommendations for further research.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Moisture susceptibility  

The presence of water in an asphalt pavement is unavoidable. Several sources can lead to the 

presence of water in the pavement. Water can infiltrate into the pavement from the surface 

via cracks in the surface of the pavement, the interconnectivity of the air void system or 

cracks, from the bottom due to an increase in the ground water level, or from the sides. 

Inadequate drying of aggregate during the mixing process can lead to the presence of water 

in the pavement as well (Santucci 2002). 

Moisture damage can be defined as the loss of strength and durability in asphalt mixtures due 

to the effects of moisture (Little and Jones 2003). Premature failure may result due to 

stripping when critical environmental conditions act together with poor and/or incompatible 

materials and traffic (Brown et al. 2001). Moisture susceptibility is a problem that typically 

leads to the stripping of the asphalt binder from the aggregate and this makes an asphalt 

concrete mixture ravel and disintegrate (Brown et al. 2001). Moisture damage can occur due 

to three main mechanisms: 1) loss of cohesion of the asphalt film; 2) failure of the adhesion 

between the aggregate particles and the asphalt film; and 3) degradation of aggregate 

particles due to freezing (Brown et al. 2001). There are six contributing processes that have 

been attributed to causing moisture damage in asphalt mixtures: detachment, displacement, 

spontaneous emulsification, pore-pressure induced damage, hydraulic scour, and 

environmental effects (Little and Jones 2003; Roberts et al. 1996). Not one of the above 

factors necessarily works alone in damaging an asphalt concrete pavement, as they can work 

in a combination of the processes.  
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2.2 Causes of moisture damage 

Moisture can damage HMA in two ways: 1) Loss of bond between asphalt cement or mastic 

and fine and coarse aggregate or 2) Weakening of mastic due to the presence of moisture. 

There are six contributing factors that have been attributed to causing moisture damage in 

HMA: detachment, displacement, spontaneous emulsification, pore-pressure induced damage, 

hydraulic scour, and environmental effects (Roberts et al. 1996, Little and Jones, 2003). Not 

one of the above factors necessarily works alone in damaging an HMA pavement, as they can 

work in a combination of the processes. Therefore a need exists to examine the adhesive 

interface between aggregates and asphalt and the cohesive strength and durability of mastics 

(Graff 1986, Roberts et al. 1996, Little and Jones 2003, Cheng et al. 2003). A loss of the 

adhesive bond between aggregate and asphalt can lead to stripping and raveling while a loss of 

cohesion can lead to a weakened pavement that is susceptible to premature cracking and pore 

pressure damage (Majidzadeh and Brovold 1968, Kandhal 1994, Birgisson et al. 2003). A brief 

discussion about these factors is presented in the following part. 

2.2.1 Detachment 

Detachment is the separation of an asphalt film from an aggregate surface by a thin film of 

water without an obvious break in the film (Majidzah and Brovold 1968). Adhesive bond 

energy theory explains the rationale behind detachment. In order for detachment not to happen, 

a good bond must develop between asphalt and aggregate; this is known as wettability (Scott 

1978). As free surface energy of adhesion or surface tension decreases the bond between the 

aggregate and asphalt increases. In the presence of water, an asphalt mixture can be considered 

a four phase system consisting of aggregate, asphalt, air, and water. The presence of water 

reduces the surface energy of the system since aggregate surfaces have a stronger preference 

for water than asphalt (Majidzadeh and Brovold 1968). The adhesive bond strengths were 
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calculated by Cheng et al. (2002) by measuring the surface energies of components, the 

asphalt-aggregate interface, in the presence of water and when under dry conditions. 

2.2.2 Displacement 

Displacement can occur at a break in the asphalt film at the aggregate surface where water can 

intrude and displace asphalt from aggregate (Fromm 1974, Tarrer and Wagh 1991). An 

incomplete coating of aggregate particles, inadequate coating at sharp edges of aggregates, or 

pinholes in the asphalt film can cause the break in the asphalt film. Scott (1978) used the 

chemical reaction theory to explain stripping as a detachment mechanism. The pH of water at 

the point of film rupture can increase the process of displacement and therefore increasing the 

separation of asphalt from aggregate (Scott 1978, Tarrer and Wagh 1991, Little and Jones 

2003). 

2.2.3 Spontaneous emulsification 

Spontaneous emulsification occurs due to inverted emulsion of water droplets in asphalt 

cement (Little and Jones 2003). Water diffuses into asphalt cement and attaches itself to an 

aggregate causing a separation between asphalt and aggregate. A loss of adhesive bond occurs 

between asphalt and aggregate. Clays and asphalt additives can further aggravate the 

emulsification process (Scott 1978, Fromm 1974, Asphalt Institute 1981). 

2.2.4 Pore pressure 

Pore pressure can develop in an HMA pavement due to entrapped water or water that traveled 

into air void systems in vapor form (Little and Jones, 2003, Kandhal 1994). The pore pressure 

in an HMA pavement can increase due to repeated traffic loading and/or increases in 

temperature as well. If an HMA pavement is permeable, then water can escape and flow out. 

However, if it is not permeable, the resulting increased pore pressure may surpass the tensile 
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strength of an HMA and strips asphalt film from an aggregate, causing micro-cracking 

(Majidzadeh and Brovold 1968, Little and Jones, 2003). Micro-cracking can develop in a 

mastic under repeated loading thus resulting in an adhesive and/or cohesive failure (Little and 

Jones 2003). The rate of micro-cracking is accelerated by an increase in pore pressure and the 

presence of water in HMA. The air void system or permeability of a pavement is an important 

property in order to control pore pressure in an HMA pavement. 

2.2.5 Hydraulic scour 

Hydraulic scour (stripping) occurs at a pavement surface and is a result of repeated traffic tires 

on a saturated pavement surface. Water is sucked into a pavement by tire rolling action (Little 

and Jones 2003). Hydraulic scour may occur due to osmosis or pullback (Fromm 1974). 

Osmosis is the movement of water molecules from an area of high concentration to an area of 

low concentration. In the case of HMA, osmosis occurs in the presence of salts or salt solutions 

in aggregate pores. The movement of these molecules creates a pressure gradient that sucks 

water through the asphalt film (Mack 1964, Little and Jones 2003). The salt solution moves 

from an area of high concentration to an area of low concentration. Cheng et al. (2002) show 

that there is a considerable amount of water that diffuses through the asphalt cement and 

asphalt mastics can hold a significant amount of water. 

2.2.6 Environmental effects 

Factors such as temperature, air, and water have deleterious effects on the durability of HMA 

(Terrel and Shute 1989, Tandon et al. 1998). Other mechanisms such as a high water table, 

freeze/thaw cycles, and aging of binder can affect the durability of HMA (Scherocman et al. 

1986, Terrel and Al-Swailmi 1994, Choubane et al. 2000). Other considerations such as 

construction (segregation and raveling) and traffic are also important. 
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2.3 Adhesion theories 

Four theories are used to describe the adhesion characteristics between asphalt and aggregate. 

The four theories are chemical reaction, surface energy, molecular orientation, and mechanical 

adhesion (Terrel and Al-Swailmi 1994). Surface tension of asphalt cement and aggregate, 

chemical composition of asphalt and aggregate, asphalt viscosity, surface texture of aggregates, 

aggregate porosity, aggregate clay/silt content, aggregate moisture content, and temperature at 

the time of mixing with asphalt cement and aggregate are material properties that affect 

adhesion (Terrel and Al-Swailmi 1994). A brief explanation of the four theories is presented in 

the following parts. 

2.3.1 Chemical reaction 

The reaction of acidic and basic components of asphalt and aggregate form water insoluble 

compounds that resist stripping (Terrel and Al-Swailmi 1992). A chemical bond forms that 

allows an asphalt-aggregate mix to resist stripping. The use of basic instead of acidic 

aggregates can lead to better adhesion of asphalt to aggregates (Terrel and Al-Swailmi 1992). 

2.3.2 Surface energy and molecular orientation 

Surface energy can be described by how well asphalt or water coats aggregate particles (Terrel 

and Al-Swailmi 1992). Water is a better wetting agent because of its lower viscosity and lower 

surface tension than asphalt (Little and Jones 2003). Using surface energy theory to calculate 

adhesive bond energies between asphalt and aggregate and cohesive strength of a mastic is 

rather complex and will be discussed further under the Tests on Loose Mixtures in Section 

2.5.1. 

The structuring of asphalt molecules at an asphalt-aggregate interface is molecular orientation. 

The adhesion between asphalt and aggregate is facilitated by a surface energy reduction at the 
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aggregate surface where asphalt is adsorbed onto a surface (Terrel and Al-Swailmi 1992, Little 

and Jones 2003). 

2.3.3 Mechanical adhesion 

Mechanical adhesion is a function of various aggregate physical properties such as surface 

texture, porosity, absorption, surface coatings, surface area, and particle size (Terrel and Al-

Swailmi 1992, Little and Jones 2003). In short, an aggregate with desirable properties that will 

not show a propensity to moisture damage within an HMA is desired. 

2.4 Cohesion theories 

According to Little and Jones (2003), cohesion is developed in a mastic and it is influenced by 

the rheology of the filled binder. The cohesive strength of a mastic is a function of the 

interaction between the asphalt cement and mineral filler, not just of the individual components 

alone. The cohesive strength of a mastic is weakened due to the presence of water through 

increased saturation and void swelling or expansion (Terrel and Al-Swailmi 1992, Little and 

Jones 2003). Cheng et al. (2002) showed that the cohesive strength can be damaged in various 

mixtures by the diffusion of water into asphalt mastics. 

2.5 Tests for determining moisture susceptibility 

Due to the detrimental effects of moisture, it is important to test the susceptibility of an asphalt 

mixture to moisture damage. Many tests are available; some of them are tests for asphalt binder 

while others are for asphalt mixes. The tests for asphalt mixes are divided into tests for loose 

mixes and tests for compacted mixes. Despite of the availability of tests for moisture 

susceptibility, none of them provides high correlation with field performance (Bausano 2006).  
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2.5.1 Tests on loose mixtures and asphalt binders 

Moisture susceptibility tests that are performed on loose mixtures are conducted on asphalt 

coated particles in the presence of water. The two main advantages of these tests are testing 

simplicity and inexpensive nature in comparison to compacted specimen test expenses. 

Another significant advantage is the use of simple equipment and procedures to conduct 

experiments (Solaimanian et al. 2003). The tests are summarized in Table 2-1. 

Table 2-1 Moisture Sensitivity Tests on Loose Samples (Solaimanian et al. 2003) 

Test Method ASTM AASHTO Other 

Methylene Blue   
Technical Bulletin 145, International 

Slurry Seal Association (ISSA 1989) 

Film Stripping   California Test 302 (1999) 

Static Immersion D1664-80* T182-84  

Dynamic Immersion   No standard exists 

Chemical Immersion   
Standard Method TMH1 (Road 

Research Laboratory 1986, England) 

Quick Bottle   
Virginia Highway and Transportation 

Research Council (Maupin 1980) 

Boiling D3625-96  
Tex 530-C 

Kennedy et al. (1984) 

Rolling Bottle   Isacsson and Jorgensen (1987) 

Net Adsorption   SHRP-A-341 (Curtis et al. 1993) 

Surface Energy   
Thelen (1958) 

Cheng et al. (2002) 

Pneumatic Pull-Off   Youtcheff and Aurilio (1997) 

*No longer available as ASTM standard. 
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2.5.1.1 Methylene blue test 

The methylene blue test is used to identify “dirty” aggregates which contain harmful clays and 

dust (Solaimanian et al. 2003). If dust or harmful clays are on aggregate particles, they affect 

the adhesion of the asphalt binder to the aggregate particles and thus a potential for stripping 

may occur in the HMA. This test is used to identify aggregates that contain clays or dust. Since 

no asphalt is used, this test cannot measure a potential for HMA stripping. 

2.5.1.2 Static immersion test (AASHTO T182) 

A sample of HMA mix is cured for 2 hours at 60ºC before being placed in a jar and covered 

with water. The jar is left undisturbed for 16 to 18 hours in a water bath at 25ºC. Again the 

amount of stripping is visually estimated by looking at the HMA sample in the jar. The results 

of this test are given as either less than or greater than 95% of an aggregate surface is stripped 

(Solaimanian et al. 2003).  

2.5.1.3 Dynamic immersion test 

The dynamic immersion test (DIM) is similar to the static immersion test, but the DIM test is 

used to accelerate the stripping effect. Loose mixture is agitated in a jar filled with water in 

order to produce a dynamic effect (Solaimanian et al. 2003). Again, the results show that as the 

period of agitation increases, the amount of stripping increases, however the tests fail to 

simulate pore pressure and traffic which is the case with all loose mixture tests. 

2.5.1.4 Film stripping test (California Test 302) 

The film stripping test is a modified version of the static immersion test (AASHTO T182-84). 

A loose mixture of asphalt coated aggregates is aged in an oven at 60ºC for 15 to 18 hours 

before being placed in a jar filled with water to cool. The jar with loose mix is rotated at 35 
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revolutions per minute (rpm) for 15 minutes to stir up the mix. Baffels in a jar stir up the mix to 

accelerate the stripping process. After 15 minutes the sample is removed, the loose mixture is 

viewed under a fluorescent light, and the percentage of stripping is estimated. The results of 

this test are given in percentage of total aggregate surface stripped (Solaimanian et al. 2003). 

2.5.1.5 Rolling bottle test 

Isacsson and Jorgenson (1987) developed the Rolling Bottle Test in Sweden in 1987. The test 

is similar to the DIM in that aggregate chips are coated in asphalt and placed in a glass jar filled 

with water. The glass jar is rotated to agitate loose HMA. A visual inspection is completed to 

note how much asphalt has been stripped from aggregates (Solaimanian et al. 2003). 

2.5.1.6 Chemical immersion test 

A loose sample of asphalt coated aggregate is placed in boiling water while increasing the 

amount of sodium carbonate. The concentration of sodium carbonate is slowly increased until 

stripping occurs and the concentration of sodium carbonate is recorded. The recorded number 

is referred to as the Riedel and Weber (R&W) number. Zero refers to distilled water, 1 refers to 

0.41 g of sodium carbonate and 9 refers to the highest concentration of sodium carbonate or 

106 g. The sample is removed from the water and sodium carbonate solution and examined for 

stripping (Solaimanian et al. 2003). 

2.5.1.7 Boiling water test 

Several versions of a boiling water test have been developed by various state agencies 

including one from the Texas State Department of Highways and Public Transportation 

(Kennedy et al. 1983 and 1984). A visual inspection of stripping is made after the sample has 

been subjected to the action of water at an elevated temperature for a specified time (Kennedy 

et al. 1983 and 1984, Solaimanian et al. 2003). This test identifies mixes that are susceptible to 
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moisture damage, but it does not account for mechanical properties nor include the effects of 

traffic (Kennedy et al. 1983 and 1984; Solaimanian et al. 2003). 

2.5.1.8 Surface reaction test 

A major problem with the tests previously presented tests is the dependence on visual 

observation for identifying stripping. The surface reaction test allows a researcher to quantify 

the level of stripping on loose asphalt mixtures. This procedure was developed by Ford et al. 

(1974). The surface reaction test evaluates the reactivity of calcareous or siliceous aggregates 

and reaction response to the presence of highly toxic and corrosive acids. As part of the 

chemical reaction, gas is emitted, which generates a pressure and this pressure is proportional 

to the aggregate surface area (Solaimanian et al. 2003). This test is based on the premise that 

different levels (severity) of stripping result in exposed surface areas of aggregates. 

2.5.1.9 Net adsorption test 

The Strategic Highway Research Program (SHRP) developed a test called the net adsorption 

test (NAT) in the early 1990’s and is documented under SHRP-A-341 (Curtis et al. 1993). This 

test examines the asphalt-aggregate system and its affinity and compatibility (Solaimanian et 

al. 2003). In addition, this test also evaluates the sensitivity of the asphalt-aggregate pair. In 

terms of other tests, the NAT yields mixed results when compared to the indirect tensile test 

with moisture conditioned specimens (Solaimanian et al. 2003). The NAT was modified by 

researchers at the University of Nevada - Reno and the results were correlated with the 

environmental conditioning chamber (ECS) (Scholz et al. 1994). The water sensitivity of a 

binder as estimated by NAT showed little or no correlation to wheel-tracking tests on the mixes 

according to SHRP-A-402 (Scholz et al. 1994). 
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2.5.1.10 Wilhelmy plate test and universal sorption device 

Researchers at Texas A&M University have led in investigating cohesive and adhesive failure 

models based on surface energy theory and a moisture diffusion model based on results from 

the Universal Sorption Device (USD) (Cheng et al. 2003). The principle behind surface energy 

theory is that the surface energy of an asphalt and aggregate is a function of the adhesive bond 

between asphalt and aggregate and the cohesive bonding within asphalt (Solaimanian et al. 

2003). The Wilhelmy plate is used to determine the surface free energy of an asphalt binder 

where the dynamic contact angle is measured between asphalt and a liquid solvent (Cheng et 

al. 2003, Solaimanian et al. 2003). The USD test is used to determine the surface free energy of 

an aggregate (Cheng et al. 2003, Solaimanian et al. 2003). The surface free energy is then used 

to compute the adhesive bond between an asphalt binder and aggregate. Cheng et al. (2002) 

showed that the adhesive bond per unit area of aggregate is highly dependent on the aggregate 

and asphalt surface energies. Also, this test shows that stripping occurs because the affinity of 

an aggregate for water is much greater than that for asphalt thus weakening the bond at the 

asphalt-aggregate interface (Cheng et al. 2002). 

Current research at Texas A & M University (Bhasin et al. 2006, Masad et al. 2006) has shown 

that the moisture resistance of asphalt-aggregate combinations depends on surface energies of 

asphalt binders and aggregates. The factors considered are film thickness, aggregate shape 

characteristics, surface energy, air void distribution and permeability. The ratio of adhesive 

bond energy under dry conditions to adhesive bond energy under wet conditions can be used to 

identify moisture susceptible asphalt-aggregate combinations and a ratio of 0.80 should be used 

as a criterion to separate good and poor combinations of materials. Dynamic mechanical 

analysis tests were conducted to evaluate a mixtures ability to accumulate damage under dry 

and moisture conditions. A mechanistic approach using a form of the Paris law was used for 

the evaluation of moisture damage. The mechanical properties are influenced by aggregate 
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gradation, aggregate shape characteristics, and film thickness. This approach captures the 

influence of moisture on crack growth and is able to distinguish good and poor performing 

HMA mixtures. 

2.5.2 Tests on compacted mixtures 

Tests conducted on compacted mixtures include laboratory compacted specimens, field cores, 

and/or slabs compacted in a laboratory or taken from the field. Table 2-2 provides moisture 

sensitivity tests which have been performed on compacted specimens. From these tests, 

physical, fundamental/mechanical properties can be measured while accounting for 

traffic/water action and pore pressure effects (Solaimanian et al. 2003). Some disadvantages of 

conducting tests on compacted mixtures are the expensive laboratory testing equipment, longer 

testing times, and potentially labor intensive test procedures. 

2.5.2.1 Immersion-compression test 

The immersion-compression test (ASTM D1075-07 (2007) and AASHTO T165-55 (1997)) is 

among the first moisture sensitivity tests developed based on testing 100mm diameter 

compacted specimens. This test consists of compacting two groups of specimens: a control 

group and a moisture conditioned group at an elevated temperature (48.8°C water bath) for 

four days (Roberts et al. 1996). The compressive strength of the conditioned and control group 

are then measured (Roberts, et al. 1996). The average strength of the conditioned specimens 

over that of the control specimens is a measure of strength lost due to moisture damage 

(Solaimanian et al. 2003). Most agencies specify a minimum retained compressive strength of 

70%. The test details are presented in ASTM Special Technical Publication 252 (Goode 1959).  
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Table 2-2 Moisture Sensitivity Tests on Compacted Samples (Solaimanian et al. 2003) 

Test Method ASTM AASHTO Other 

Moisture Vapor 

Susceptbility 
  

California Test 307 (2000) 

Developed in late 1940’s 

Immersion-

Compression 
D1075-07 T165-55 ASTM STP 252 (Goode 1959) 

Marshal Immersion   Stuart (1986) 

Freeze/thaw Pedestal 

Test 
  Kennedy et al. (1982) 

Original Lottman 

Indirect Tension 
  

NCHRP Report 246 (Lottman 1982); 

Transportation Research Record 515 

(1974) 

Modified Lottman 

Indirect Tension 
 T283-89 

NCHRP Report 274 (Tunnicliff and 

Root 1984), Tex 531-C 

Tunnicliff-Root D4867-09  
NCHRP Report 274 (Tunnicliff and 

Root 1984) 

ECS with Resilient 

Modulus 
  

SHRP-A-403 (Al-Swailmi and Terrel 

1994) 

Hamburg Wheel 

Tracking 
  Tex-242-F 

Asphalt Pavement 

Analyzer 
  

Pavement Technology Inc., Operating 

Manual 

ECS/SPT   NCHRP 9-34 (2002) 

Multiple 

Freeze/thaw 
  No standard exists 
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2.5.2.2 Marshall immersion test 

The procedure for producing and conditioning two groups of specimens is identical to the 

immersion-compression test. The only difference is the Marshall stability test is used as the 

strength parameter as opposed to the compression test (Solaimanian et al. 2003). There is no 

documented number for the minimum retained Marshall stability. 

2.5.2.3 Moisture vapor susceptibility 

The moisture vapor susceptibility test was developed by the California Department of 

Transportation (California Test Method 307 (2000)). A California kneading compactor is used 

to compact two specimens. The compacted surface of each specimen is sealed with an 

aluminum cap and a silicone sealant is applied to prevent the loss of moisture (Solaimanian, et 

al. 2003). After the specimens have been conditioned at an elevated temperature and suspended 

over water, testing of the specimens commences. The Hveem stabilometer is used to test both 

dry and moisture conditioned specimens. A minimum Hveem stabilometer value is required for 

moisture conditioned specimens, which is less than that required for dry specimens used in the 

mix design (Solaimanian et al. 2003). 

2.5.2.4 Repeated pore water pressure stressing and double-punch method 

The repeated pore water pressure stressing and double punch method was developed by 

Jimenez (1974) at the University of Arizona.  This test accounts for the effects of dynamic 

traffic loading and mechanical properties. In order to capture the effects of pore water pressure, 

the specimens are conditioned by a cyclic stress under water. After the specimen has 

undergone the pore pressure stressing the tensile strength is measured using the double punch 

equipment. Compacted specimens are tested through steel rods placed at either end of the 

specimen in a punching configuration. 
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2.5.2.5 Original Lottman method 

The original Lottman test was developed at the University of Idaho by Robert Lottman (1978). 

The laboratory procedure consists of compacting three sets of 100mm diameter by 63.5mm 

Marshall specimens to be tested dry or under accelerated moisture conditioning (Lottman et al. 

1974). Below are the following laboratory conditions for each of the groups: 

• Group 1: Control group, dry; 

• Group 2: Vacuum saturated with water for 30-minutes; and 

• Group 3: Vacuum saturation followed by freeze cycle at -18°C for 15- hours 

and then subjected to a thaw at 60°C for 24-hours. 

After the conditioning phase the indirect tensile equipment is used to conduct tensile resilient 

modulus and tensile strength of conditioned and dry specimens. All specimens are tested at 

13°C or 23°C at a loading rate of 1.65mm/min. The severity of moisture damage is based on a 

ratio of conditioned to dry specimens (TSR) (Lottman et al. 1974, Lottman 1982). A minimum 

TSR value of 0.70 is recommended (NCHRP 246). Laboratory compacted specimens were 

compared to field cores and plotted against each other on a graph. The laboratory and field core 

specimens line up fairly close to the line of equality. 

2.5.2.6 Modified Lottman test (AASHTO T283) 

“Resistance of Compacted Bituminous Mixture to Moisture Induced Damage” AASHTO 

T283, is the most commonly used test method for determining moisture susceptibility of HMA. 

This test is similar to the original Lottman test with only a few exceptions which are: 

• Two groups, control versus moisture conditioned, 
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• Vacuum saturation until a saturation level of 70% to 80% is achieved, and 

• Test temperature and loading rate changed to 50mm/min at 25ºC. 

A minimum TSR value of 0.70 is recommended, but many agencies specify a TSR value of 

0.80 (Roberts et al., 1996). AASHTO T283 was adopted by the Superpave system as the 

moisture test method of choice even though AASHTO T283 was developed for Marshall 

mixture design. State highway agencies have reported mixed results when using AASHTO 

T283 and comparing the results to field performance (Stroup-Gardiner et al. 1992, Solaimanian 

et al. 2003). NCHRP Project 9-13 looked at different factors affecting test results such as types 

of compaction, diameter of specimen, degree of saturation, and freeze/thaw cycles. 

Conclusions from looking at the previously mentioned factors can be seen in the NCHRP 

report 444 (Epps et al. 2000). The researchers concluded that either AASHTO T283 does not 

evaluate moisture susceptibility or the criterion, TSR, is incorrectly specified. NCHRP 9-13 

examined mixtures that have historically been moisture susceptible and ones that have not. The 

researchers also examined the current criteria using Marshall and Hveem compaction. A recent 

study at the University of Wisconsin found no relationship exists between TSR and field 

performance in terms of pavement distress index and moisture damage (surface raveling and 

rutting) (Kanitpong and Bahia 2006). Additional factors such as production and construction, 

asphalt binder and gradation play important roles whereas mineralogy does not appear to be an 

important factor in relation to pavement performance.   

AASHTO T283 was developed based on 100mm Marshall compacted specimens.  With the 

transition from 100mm Marshall compacted specimens to 150mm Superpave compacted 

specimens, the standard allowed the use of either 150 or 100mm samples and the requirements 

remained the same.  Research was done to investigate the effect of the different sample sizes. It 

was discovered that three freeze/thaw cycles for conditioning are needed when using 
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specimens created using 150mm Superpave specimens (Bausano et al. 2006, Kvasnak 2006).  

However, to continue using one freeze/thaw cycle and maintain the same probability level as 

attained with a TSR value for 0.80 for 100mm Marshall compacted specimens, a TSR value of 

0.87 and 0.85 should be used for 150mm and 100mm Superpave compacted specimens, 

respectively.  If an 0.80 TSR for 150mm Superpave specimens is used, this would correspond 

to a TSR ratio of 0.80 for 100mm Marshall specimens (Bausano et al 2006, Kvasnak 2006). 

2.5.2.7 Texas freeze/thaw pedestal test 

The water susceptibility test was developed by Plancher et al. (1980) at the Western Research 

Institute but was later modified into the Texas freeze/thaw pedestal by Kennedy et al. (1983). 

Even though this test is rather empirical in nature, it is fundamentally designed to maximize the 

effects of bond and to minimize the effects of mechanical properties such as gradation, density, 

and aggregate interlock by using a uniform gradation (Kennedy et al. 1983). An HMA 

briquette is made according to the procedure outlined by Kennedy et al. (1982). The specimen 

is then placed on a pedestal in a jar of distilled water and covered. The specimen is subjected to 

thermal cycling and inspected each day for cracks. The number of cycles to induce cracking is 

a measure of the water susceptibility (Kennedy et al. 1983). The benefits of running this test 

are some key failures can be seen: 

• Bond failure at the asphalt-aggregate interface (stripping) and 

• Fracture of the thin asphalt films bonding aggregate particles (cohesive failure) 

by formation of ice crystals (Solaimanian et al. 2003). 

2.5.2.8 ASTM D4867-09 (Tunnicliff-Root Test Procedure) 

“Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures,” ASTM 

D4867 is comparable to AASHTO T283. The only difference between AASHTO T283 and 
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ASTM D4867 is that the curing of loose mixture at 60°C in an oven for 16 hours is eliminated 

in ASTM D4867. A minimum TSR of 0.70 to 0.80 are specified by highway agencies (Roberts 

et al. 1996). 

2.5.2.9 Hamburg Wheel-Tracking Device (HWTD) 

The Hamburg wheel tracking device was developed by Esso A.G. and is manufactured by 

Helmut-Wind, Inc. of Hamburg, Germany (Aschenbrener et al. 1995, Romero and Stuart 

1998). Two samples of hot mix asphalt beams with each beam having a geometry of 260mm 

wide, 320mm long, and 40mm thick are used. This device measures the effects of rutting and 

moisture damage by running a steel wheel over the compacted beams immersed in hot water 

(typically 50ºC) (Aschenbrener et al. 1995). The steel wheel is 47mm wide and applies a load 

of 705N while traveling at a maximum velocity of 340mm/sec in the center of the sample. A 

sample of HMA is loaded for 20,000 passes or when 20mm of permanent deformation occurs 

(Aschenbrener et al. 1995). Some important results the HWTD gives are: 

• Postcompaction consolidation: Deformation measured after 1,000 wheel passes;  

• Creep Slope: Number of wheel passes to create a 1mm rut depth due to viscous 

flow; 

• Stripping Slope: Inverse of the rate of deformation in the linear region of the 

deformation curve; and 

• Stripping Inflection Point: Number of wheel passes at the intersection of the 

creep slope and stripping slope (Aschenbrener et al. 1995). 
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2.5.2.10 Asphalt Pavement Analyzer (APA) 

The APA is a type of loaded wheel test. Rutting, moisture susceptibility, and fatigue cracking 

can all be examined with an APA. The predecessor to the APA is the Georgia Loaded Wheel 

Tester (GLWT). Similar to the GLWT, an APA can test either cylindrical or rectangular 

specimens. Using either specimen geometry, the conditioned and unconditioned samples are 

subjected to a steel wheel that transverses a pneumatic tube, which lies on top of an asphalt 

sample. As the wheel passes back and forth over the tube, a rut is created in a sample. 

Numerous passes lead to a more defined rut and eventually, stress fractures can begin to 

manifest as cracks. Modeling these ruts and cracks helps to predict how different combinations 

of aggregate and binder for given criteria such as temperature and loading, will react under 

varying circumstances. The conditioning of a sample is based upon the characteristic an APA 

is testing. One of the main differences between an APA and a GLWT is an APA’s ability to 

test samples under water as well as in air. Testing submerged samples allows researchers to 

examine moisture susceptibility of mixes (Cooley et al. 2000). 

APA results are comparable to field data. A study that compared WesTrack, a full-scale test 

track, data with APA results found a strong relationship between field data and laboratory data 

(Williams and Prowell 1999). An additional study at the University of Tennessee revealed that 

an APA sufficiently predicted the potential for rutting of 30 HMAs commonly used in 

Tennessee (Jackson and Baldwin 1999). A study using the APA showed that there is a strong 

relationship between water absorbed and APA test data.  When the APA results were compared 

to those of AASHTO T283, there were no strong relationship between TSR results and APA 

test results. The variability of the rut depth data was high, so the study recommended using at 

least three replicates (Kvasnak 2006). 

To test moisture susceptible HMA samples, specimens are created in the same manner as the 

specimens for testing rutting potential without moisture. The samples are placed in an APA, 
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which has an inner box that can be filled with water. The samples are completely submerged at 

all times during testing; therefore effects of evaporation do not need to be taken into account. 

The water bath is heated to a desired test temperature and the air in the chamber is also heated 

to the same desired test temperature. 

2.5.2.11 Flexural Fatigue Beam Test with Moisture Conditioning 

Moisture damage has been known to accelerate fatigue damage in pavements. Therefore, 

conditioning of flexural fatigue beams was completed by Shatnawi et al. (1995). Laboratory 

compacted beams were prepared from HMA sampled at jobs and corresponding field fatigue 

beams were cut from the pavement. The conditioning of the beams is as follows: 

• Partial vacuum saturation of 60% to 80%; 

• Followed by 3 repeated 5-hour cycles at 60ºC followed by 4-hours at 25ºC 

while remaining submerged; and 

• One 5-hour cycle at -18ºC (Shatnawi et al. 1995). 

The specimens are then removed from a conditioning chamber and tested according to 

AASHTO T321. Initial stiffness and fatigue performance were affected significantly by 

conditioning the specimens (Shatnawi et al. 1995). 

2.5.2.12 Environmental Conditioning System (ECS) 

The ECS was developed by Oregon State University as part of the SHRP-A-403 and later 

modified at Texas Technological University (Alam et al. 1998). The ECS subjects a membrane 

encapsulated HMA specimen that is 102mm in diameter by 102mm in height to cycles of 

temperature, repeated loading, and moisture conditioning (Terrel and Al-Swailmi 1994, Al-

Swailmi and Terrel 1992a, Al-Swailmi and Terell 1992b, Terrel and Al-Swailmi 1993). Some 
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important fundamental material properties are obtained from using an ECS. These properties 

are resilient modulus (MR) before and after conditioning, air permeability, and a visual 

estimation of stripping after a specimen has been split open (Al-Swailmi and Terrel 1994).  

One of the significant advantages of using an ECS is the ability to influence the HMA 

specimens to traffic loading and the resulting effect of pore water pressure (Solaimanian et al. 

2003) which is close to field conditions. The downfall of the test is that it does not provide a 

better relationship to field observation than what was observed using AASHTO T283. Also, 

AASHTO T283 is much less expensive to perform and less complex than the ECS. 

2.5.2.13 ECS/Simple Performance Test Procedures 

As a result of NCHRP Projects 9-19 (NCHRP reports 465), 9-29 (NCHRP reports 513), and 1-

37 (M-EPDG) (Witzack et al. 2002, Bonaquist et al. 2003, and NCHRP 2004); new test 

procedures such as asphalt mixture performance tests (AMPTs) are being evaluated. According 

to Witczak et al. (2002), an AMPT is defined as “A test method(s) that accurately and reliably 

measures a mixture response or characteristic or parameter that is highly correlated to the 

occurrence of pavement distress (e.g. cracking and rutting) over a diverse range of traffic and 

climatic conditions.” The mechanical tests being looked at are the dynamic modulus |E*|, 

repeated axial load (FN), and static axial creep tests (FT). These tests are conducted at elevated 

temperatures to determine a mixtures resistance to permanent deformation. The dynamic 

modulus test is conducted at an intermediate and lower test temperature to determine a 

mixtures susceptibility to fatigue cracking. Witczak et al. (2002) have shown that dynamic 

modulus, flow time, and flow number yield promising correlations to field performance. 

NCHRP 9-34 is currently looking at the aforementioned tests along with the ECS to develop 

new test procedures to evaluate moisture damage (Solaimanian et al. 2003). Solaimanian et al. 

(2006) reported that the results of the Phase I and Phase II testing of NCHRP 9-34 show that 

the dynamic complex modulus (DCM) test should be coupled with the ECS for moisture 
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sensitivity testing. This key finding of NCHRP project 9-34 (NCHRP report 589) show that the 

ECS/DCM test appears to separate good performing mixes from poor performing mixes in the 

field compared with TSR testing from ASTM D4867 and that the flow number test has high 

variability and this makes it not recommended for use in moisture susceptibility testing 

(Solaimanian et. al 2007). Bausano (2006) used the dynamic modulus test to determine the 

moisture susceptibility of the mixes at rutting temperature and the results were good in 

distinguishing the expected mix behavior.  The researcher recommended in that study to try 

intermediate and midrange temperature to study the effect of moisture at those temperatures 

(Bausano 2006). 

2.6 Dynamic modulus test 

Dynamic modulus is one of the oldest mechanistic tests to be used to measure the 

fundamental properties of asphalt concrete. Dynamic modulus testing has been studied since 

the early 1960’s by Papazian (1962) and became a standard test in 1979 by the American 

Society for Testing and Materials (ASTM) under D3497 ‘Standard Test Method for Dynamic 

Modulus of Asphalt Concrete Mixtures’ (ASTM 2003). A sinusoidal (haversine) 

compressive axial stress is applied to a test specimen, under the testing procedure for 

dynamic modulus. The testing procedure includes using various frequencies and 

temperatures to capture the linear visco-elastic properties of the asphalt concrete.  

Dynamic modulus is a measure of the relative stiffness of a mix. Mixes that tend to have 

good rut resistance at high service temperatures, likewise have a corresponding high 

stiffness. Although the tradeoff is at intermediate temperatures, stiffer mixes are often more 

prone to cracking for thicker pavements (NCHRP 2004). For this reason, dynamic modulus 

testing is conducted over a range of test temperatures and frequencies to measure the linear 

visco-elastic properties of asphalt concrete mixtures. The tested ranges of temperature and 
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frequencies are used to develop a master curve for each mixture in order to exhibit the 

properties of the mixture over a range of reduced temperatures and/or frequencies. The use of 

dynamic modulus in moisture susceptibility evaluation was studied and reported to have 

good results in NCHRP Report 589 (Solaimanian et. al 2007)  

The dynamic complex modulus is determined by applying a uniaxial sinusoidal vertical 

compressive load to an unconfined or confined HMA cylindrical sample as shown in Figure 2-

1.  

 

Figure 2-1 Haversine Loading Pattern or Stress Pulse for the Dynamic Modulus Test 

(Witczak et al. 2002) 

The stress-to-strain relationship under a continuous sinusoidal load pattern for a linear 

viscoelastic material is defined by the dynamic complex modulus, E*. The dynamic modulus, 

|E*|, is the absolute value of the dynamic complex modulus. Mathematically, |E*| is equal to 

the maximum peak dynamic stress (σo) divided by the peak recoverable strain (εo):  

* o

o

E σ
ε

=

 

 (2-1) 
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The real and imaginary parts of the dynamic modulus can be written as 

* ' ''E E iE= +   (2-2) 

The previous equation shows that E* has two components; a real and an imaginary component. 

E' is referred to as the storage or elastic modulus component, while E'' is referred to as the loss 

or viscous modulus. The angle by which the peak recoverable strain lags behind the peak 

dynamic stress is referred to as the phase angle, φ. The phase angle is an indicator of the 

viscous properties of the material being evaluated.  

Mathematically, this is expressed as  

φφ sin|*|cos|*|* EiEE +=  (2-3) 

360×=
p

i

t
t

φ  (2-4) 

where: 

ti = time lag between a cycle of stress and strain(s), 

tp = time for a stress cycle(s), and 

i = imaginary number. 

For a purely viscous material, the phase angle is 90°, while for a purely elastic material the 

phase angle is 0° (Witczak et al. 2002). The dynamic modulus, a measurable, “fundamental” 

property of an HMA mixture is the relative stiffness of a mix. Mixes that have a high stiffness 

at elevated temperatures are less likely to deform. But, stiffer mixes at an intermediate test 

temperature are more likely to crack for thicker pavements (Shenoy and Romero 2002).  
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2.7 Dynamic modulus master curves 

The asphalt mixtures are thermorheologically simple materials and the time-temperature 

superposition principle is applicable in the linear viscoelastic state. The dynamic modulus and 

phase angle of asphalt mixtures can be shifted along the frequency axis to form single 

characteristic master curves at a desired reference temperature or frequency that is fitted to a 

sigmoidal function. The sigmoidal function reaches asymptotically the limiting mix stiffness. 

At low temperatures, the limiting mix stiffness is dependent on the glassy modulus of the 

binder, while at high temperatures, the limiting mix stiffness is dependent on the modulus of 

aggregate skeleton (Pellinen 2008). 

Typically the shift factors αT are obtained from the Williams-Landel-Ferry (WLF) equation 

(Williams et al. 1955): 

S

S
T TTC

TTC
−+
−

=
2

1 )(
logα  (2-5) 

where: 

 C1 and C2 are constants,  

Ts is the reference temperature, and  

T is the temperature of each individual test. 

A new method of developing the master curve for asphalt mixtures was developed in research 

conducted by Pellinen and Witczak (2002) at the University of Maryland. In this study, master 

curves were constructed fitting a sigmoidal function to the measured compressive dynamic 

modulus test data using non-linear least squares regression techniques (Pellinen and Witczak 
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2002). The shift can be done by solving the shift factors simultaneously with the coefficients of 

the sigmoidal function. The sigmoidal function is defined by equation 2-6 (Williams et al. 

1955).  

( )Trfe
E αγβ

αδ +−+
+= )log(

*

1
log

 
(2-6) 

where: 

log|E*| = log of dynamic modulus; 

δ = minimum modulus value; 

fr = reduced frequency; 

α = span of modulus values;  

α T = shift factor according to temperature; and  

β, γ = shape parameters. 

2.8 Repeated load test (flow number) test  

The flow number test (i.e. repeated load test, dynamic creep test) is based on the repeated 

loading and unloading of an HMA specimen where the permanent deformation of a specimen 

is recorded as a function of the number of load cycles. The stress applied to the specimen is 

divided into two parts; seating stress and deviator stress. The deviator stress is applied for 0.1 

second followed by a 0.9 second rest period for the specimen at the seating stress. There are 

three types of phases that occur during a repeated load test: primary, secondary, and tertiary 

flow. In the primary flow region, there is a decrease in strain rate with time followed by a 

constant strain rate in the secondary flow region, and finally an increase in strain rate in the 
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tertiary flow region. Tertiary flow signifies that a specimen is beginning to deform significantly 

and the individual aggregate that makes up the skeleton of the mix is moving past each other 

“flow”. The flow number is based upon the onset of tertiary flow (or the minimum strain rate 

recorded during the course of the test) (Witczak et al. 2002). The following description is 

shown graphically in Figure 2-2. 

 

Figure 2-2 Flow Number Loading (Robinette 2005) 

 Flow number is defined as the number of load applications when shear deformation 

begins (Witczak et al. 2002). Flow number testing is similar to pavement loading because 

pavement loading is not continuous; there is a dwell period between loadings. This allows a pavement 

a certain amount of time to recover some strain induced by the loading. There is good correlation 

between field performance and the flow number. The flow number test could be used as a 

means of comparing mixes for rut susceptibility (Zhou and Scullion 2003). It was reported in 

 

Flow Number = Minimum Strain Rate

Load Applications (N)

St
re

ss
 ( σ

)

0.1sec 0.9sec

Load Applications (N)

St
ra

in
 ( ε

)

Primary 
Flow

Secondary 
Flow

Tertiary 
Flow

Log Load Applications (log(N))

St
ra

in
 R

at
e

Flow Number



www.manaraa.com

33 

 

 

 

NCHRP Report 589 that flow number test results are not satisfactory when it comes to 

moisture damage prediction (Solaimanian et. al 2007).  

The calculation of flow number was presented in NCHRP report 513 (Bonaquist et al. 2003). 

There is a three-step process for flow number calculation. The procedure consists of 1) 

numerical calculation of the strain rate; 2) smoothing of the creep data; and 3) identification of 

the minimum smoothed creep rate as this is where the flow number occurs. The following 

equation was used to determine the creep rate: 

( ) ( ) ( )
2

ip p i N p i Nd
dN N
ε ε ε+Δ −Δ−

=
Δ

  (2-7) 

where: 

( )
ipd

dN
ε

= rate of change of strain with respect to cycles or creep rate at i cycle (1/cycle), 

( )p i Nε +Δ = strain at i+∆N cycles, 

( )p i Nε −Δ = strain at i-∆N cycles, and 

∆N = number of cycles sampling points. 

The next step required that the data be smoothed through a running average of five points. Two 

creep rates before and after and including the creep rate at that instant was used. Equation 2-8 

was used to determine the smoothed creep rate: 

'
2 21

5
i i N i N i i N i Nd d d d d d

dN dN dN dN dN dN
ε ε ε ε ε ε− Δ −Δ +Δ + Δ⎛ ⎞= + + + +⎜ ⎟

⎝ ⎠
  (2-8) 
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where: 

'
id

dN
ε

= smoothed creep rate at i sec (1/cycles), 

2i Nd
dN
ε − Δ = creep rate at i-2∆N cycles (1/cycles), 

i Nd
dN
ε −Δ = creep rate at i-∆N cycles (1/cycles), 

id
dN
ε = creep rate at i cycles (1/cycles), 

i Nd
dN
ε +Δ = creep rate at i+∆N cycles (1/cycles), and 

2i Nd
dN
ε + Δ = creep rate at i+2∆N cycles (1/cycles). 

The final step is to determine the cycle where the minimum creep rate occurs in the data set. If 

no minimum occurred during the test, then the flow number is reported as being greater than or 

equal to the number of loads applied during the course of the test. When several minimum 

creep rates occurred in a data set, then the first minimum value is reported as the flow number. 

2.9 Ohio State model 

One way to analyze the flow number test results is the Ohio State Model. This model is 

presented by Huang (2004). It assumes a linear relationship between log the strain and log the 

number of load repetitions. The formula of this relationship is: 
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          (2-9) 

where: 

pε  is permanent strain at a specific loading cycle, 

N is the loading cycle, and  

A and m are regression constants. 

Khedr (1986) analyzed the parameters of this relationship and concluded that the parameter 

(m) is dependent on the material type. Stress-strain pattern and intensity, stress level, and 

dissipated plastic strain energy during the dynamic loading affect the parameter (A). The lines 

achieved are nearly parallel, which means that (m) is constant for all samples of the same 

material tested under various conditions and is independent of the stress level and temperature, 

Figure 2-3. Studying the parameter (A) and applying regression analysis, the result achieved 

showed that (A) is a function of the applied deviator stress and the resilient modulus. 
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Figure 2-3 Relationship Between εp/N and N (1 psi = 6.9 kPa), after (Khedr 1986) 

The relationship between log A and log (MR/σd) is a straight line, Figure 2-4 (Khedr 1986) 

b

d

RMaA −= )(
σ

         (2-10) 

where: 

 A is the regression constant from equation 2-9, 

RM  is the resilient modulus,  

dσ  is the applied deviator stress, and 

a and b are material dependent regression constants. 
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Majidzadeh et al (1978) applied these two relationships. They tested specimens by varying the 

deviator stress and the temperature. The variation in parameter (m) came out to be 

insignificant. They generalized the results by taking an average value for (m) which represents 

the all tested samples and then calculated the normalized value of the parameter (A). The 

relationship (2-10) was analyzed using the normalized (A) value and both equations came out 

to be applicable to all samples tested in that research. 

 

Figure 2-4 Relationship Between Parameter A and MR/σd, After (Khedr 1986) 
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2.10 Asphalt pavement analysis and modeling 

2.10.1 The beginnings of asphalt pavement analysis 

Asphalt pavement mixtures have been around since 1874 (Roberts et al. 2002), with informal 

pavement design procedures starting in 1920 (Vesic and Domaschuk 1964). In 1885, Joseph 

Boussinesq developed a method for determining induced stresses and strains in an infinite 

elastic half-space based on a point load (Coduto 1999). These equations were based on a linear 

elastic material and have been applied to asphalt pavements. Donald Burmister was the first 

researcher to apply elastic layer theories developed by Love and Timeshenko to determine 

stress and displacement of a pavement structure (Burmister 1943). Burmister realized that most 

pavements were multi-layer systems and that the theories that were developed by Boussinesq 

(infinite elastic half-space) and Boit and later Pickett (infinitely elastic second layer) were not 

applicable to such systems. Burmister deemed that settlement was the most important aspect to 

consider in pavement design. Burmister used the basic Boussinesq equations to develop his 

own set of equations for a two-layered system. A correction coefficient was employed and 

compared to that of the Boussinesq results, to verify the solutions. The correction coefficient 

was a function of the radius of the load to the thickness of the first layer and the ratio of the 

elastic modulus of the second layer to that of the first layer. Burmister demonstrated through 

example pavements how the graphical representation of the correction coefficient could be 

used in various material and loading conditions for the determination of layer thicknesses. In 

addition, an approach for a three-layer system was presented. In the discussion of the paper by 

Burmister (1943), T.A. Middlebrook, U.S. Engineer Department, War Department cited that 

there was no field knowledge of the true stress-strain characteristics to warrant the use of the 

developed method by Burmister. It was also noted that pavement failures are not by deflections 

but rather the stresses and strains that are developed under loading (Huang 2003). 
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In an effort to better understand the mechanisms of pavement failure, the critical location 

where the failure originates needed to be identified. There are two major modes of failure for 

flexible pavement: permanent deformation and fatigue cracking. Kerkhoven and Dormon 

(1953) determined that the critical location where rutting was believed to occur could be 

readily attributed to compressive strains at the surface of the subgrade. The interface of the 

other pavement layers should also be examined to ensure that higher compressive strains do not 

persist. The mode of fatigue cracking was found to be the horizontal strains at the bottom of the 

asphalt layer (Saal and Pell 1960). 

In an effort to validate the mechanistic functions of Boussinesq and Burmister, an analysis of 

the AASHO Road Tests was conducted by Vesic and Domaschuk (1964). The true stress-strain 

characteristics of a pavement under a variety of loading and environmental conditions were 

readily available from this field study. It was determined that the stress distribution and the 

deflection basins closely approximated the Boussinesq results. This does not discount 

Burmister’s findings but demonstrates that there is a need to better understand the mechanics of 

flexible pavement, because field results inherently have greater variability and uncontrollable 

environmental conditions. Areas where additional study was suggested were the effects of 

pavement temperature, the presence of moisture, and the rate of load application. 

2.10.2 Rheological models for asphalt concrete 

To better understand flexible pavements response to loading an explanation of the models used 

to describe the interaction of loading and the response of flexible pavements was identified by 

Lytton et al. (1993). Lytton et al.  (1993) present in detail the different models that are used to 

describe the elastic, plastic, viscoelastic, and viscoelastoplastic models as they apply to the 

different distresses and temperatures that a pavement endures throughout its life. At low 

temperatures a linear elastic or viscoelastic model is appropriate, with Maxwell, Kelvin-Voigt, 

and Burger components in series or in parallel as illustrated in Figure 2-5. The Burger model 
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with Kelvin model elements in series can capture the viscoelastoplastic behavior of a flexible 

pavement at the higher temperatures. The reason that a series of Kelvin models are required is 

that a single Kelvin model is not adequate to capture the retarded strain that takes place over 

time.  

 

Figure 2-5 Mechanical Models: (a) Maxwell, (b) Kelvin-Voigt, and (c) Burger 

For higher temperatures, flexible pavements response is said to best be described by a 

viscoelastoplastic model. A viscoelastoplastic model (Figure 2-6) is representative of a 

repeated load, where a load is placed on a pavement and there is instantaneous deformation 

followed by some creep; and with the unloading of the pavement, there is an instantaneous 

elastic rebound followed by creep recovery. Figure 2-6 displays a single loading cycle and the 

materials response due to the loading. 
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Figure 2-6 Viscoelastoplastic Component Model (Lytton et al. 1993) 

 

In Figure 2-6, εe is the elastic strain - recoverable and time independent, εp is the plastic strain - 

irrecoverable and time independent, εve is the viscoelastic strain - recoverable and time 
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dependent, and εvp is the viscoplastic strain - irrecoverable and time dependent (Uzan et al. 

1985).  

2.10.3 Finite element modeling of asphalt concrete 

The first research that studied asphalt as viscoelastic material was that done by Secor and 

Monismith (1961). The first application of the finite element analysis was the research by 

Duncan et al. (1968), in which the elastic theory was applied. Owen and Hinton (1980) 

developed a two dimensional (2D) finite element analysis program. The model that Owen and 

Hinton uses is a four parameter model with a spring and dashpot in series and a second spring 

and dashpot in parallel to the first series. Additionally, one of the dashpots is modeled with a 

friction slider to account for the initial viscoelastic response prior to initial yielding followed by 

viscoplastic response. Lytton et al. (1993) developed a similar 2D finite element program, with 

only minor modifications based on a viscoelastoplastic model. Two main finite element 

programs were developed in the 1980s: ILLI-PAVE (Raad and Figueron 1980) and MICH-

PAVE (Harichandron et al. 1989). The two programs are used in the analysis of the pavement 

structures for mechanistic pavement. 

Collop et al. (2003) have developed a finite element program named CAPA-3D which uses the 

viscoelastoplastic model to determine the stresses throughout an element due to loading. This 

program uses the Burger model for material characterization as it was mainly concerned with 

permanent deformation. The program allows for the development of the pavement structure 

where each layer is characterized by its Young’s Modulus, Poisson’s ratio, and thickness. 

Collop et al. (2003) ran a simulation with a load of 700kPa at 20°C to show the stress, 

accumulated strain and damage, and equivalent viscosities throughout the element, due to a 

single load application. The simulations illustrated that the location of the maximum strain was 

dependent on the stress-dependence of the flexible pavement. Stress-dependent pavements 
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showed the greatest stress at approximately one-half the thickness of the asphalt layer, whereas 

non-stress-dependent pavements showed more of an even distribution of vertical strain. Elseifi 

et al. (2006) used the finite element analysis method to compare the material response when the 

material was modeled as elastic or as viscoelastic. The conclusion of this study was that the 

viscoelastic simulation results in a more accurate simulation of the pavement response (Elseifi 

et al. 2006). 

2.11 Stochastic finite element analysis 

The stochastic finite element model (SFEM) approach was developed by Ghanem and Spanos 

(1991). SFEM provides an extension for the deterministic finite element method to incorporate 

uncertainties. The stochastic finite element method is defined as a combination between the 

finite element method and probabilistic analysis (Haldar and Mahadevan 2000). There are two 

main approaches to perform a stochastic finite element analysis. The first approach is the 

intrusive approach, in which the variability is applied to the inputs and then implemented in the 

stiffness matrix. The second approach is the non-intrusive approach, in which a finite element 

software is used as a black box and the variability is applied to the input. In this case, the user 

obtains several stiffness matrices (Herzog et al. 2007). Although several studies were done on 

asphalt cement concrete using the finite element method, the number of studies that are 

reported to use the stochastic finite element approach is very limited. The majority of the 

research that utilized the finite element method did a sensitivity analysis, which can include 

pavement thickness, effect of different tire loads, etc. The first research that used SFEM in 

asphalt pavement application is the research done by Lua and Sues (1996). The researchers 

documented that ignoring uncertainties and spatial variability in pavements implies a false 

sense of accuracy. The researchers also concluded that including spatial variability is a more 

accurate representation of the field physical conditions (Lua and Sues 1996). Another research 

study (Stolle 2002) used the stochastic finite element simulation to backcalculate the layer and 
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subgrade moduli variability that corresponds to the scatter achieved using the falling weight 

deflectometer (FWD). It was concluded that stochastic finite element method provided a 

powerful tool for evaluating the sensitivity of the response of the system parameters. (Stolle 

2002). 
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CHAPTER 3 EXPERIMENTAL PLAN AND TEST SETUP 

3.1  Experimental plan 

 Loose samples were procured from sixteen projects that were constructed within the 

state of Iowa. The mixes were selected to cover a wide range of material properties. The 

mixes sampled include base course, intermediate course, and surface course mixes. Three 

traffic levels were considered; <3, 3-10, and >10 million equivalent single axle loads 

(ESALs). Two nominal maximum aggregate mixes (NMAS); 12.5 and 19.0mm were used 

and three binder performance grades (PG 58-25, PG 64-22, and PG 70-28) are represented. 

The properties of the mixes are presented in Table 3-1. The samples were compacted using a 

Pine Superpave gyratory compactor to obtain samples that are 100mm in diameter and 

approximately 150mm in height. All samples were compacted to 7±1% air voids. The 

experimental plan was developed to be able to test the samples under different conditions that 

might occur in the field. The samples were subjected to five different modes of moisture 

conditioning: 1. unconditioned without water submersion testing, 2. unconditioned with 

water submersion testing, 3. moisture saturation with water submersion testing, 4. moisture 

saturation with freeze/thaw conditioning without water submersion testing, and 5. moisture 

saturation with freeze/thaw conditioning and with water submersion testing. Five replicates 

were tested in each condition for each mix. The five conditions were tested under the flow 

number test scheme. Condition 2 was only tested on five of the sixteen mixes. It was not 

possible to run the dynamic modulus test in the case of water submersion because the test 

protocol dictates the use of external linear variable differential transformers (LVDTs) on the 

sides of the specimen. As a result dynamic modulus test was performed on unconditioned 

samples (condition 1) and samples conditioned with one freeze-thaw cycle (condition 4). The 

test was performed at two different temperatures (4 and 21°C) and nine frequencies (0.1, 0.3, 

0.5, 1.0, 3.0, 5.0, 10.0, 15.0, and 25.0Hz). The samples used in the dynamic modulus testing 
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were then used in the flow number testing. Ten samples not five were tested in condition 4 

because the samples were used in conditions 4 and 5 for flow number testing. Ten gyratory 

compacted samples 100mm in diameter and 62.5mm in height with 7±1% air voids. The 

samples were split into two groups with equal average air voids. One of the groups was used 

as a control and the second group was conditioned with one freeze/thaw cycle (condition 4). 

Table 3-2 summarizes the testing plan, where each X represents a sample tested. 

Table 3-1 Properties of Sampled Mixes 

Project Name 
NMAS

(mm) 

Binder 

PG 

Traffic Level 
Designation 

Million ESALs 

HWY 330 Base 19.0 64-22 <3 330B 

HWY 218, Tripoli 19.0 64-22 <3 218 

I-80 Base 19.0 64-22 >10 I80B 

I-235 Intermediate 19.0 70-28 >10 235I 

6th St. Nevada 12.5 64-22 <3 6N 

Dedham 12.5 58-28 <3 Ded 

Rose Street 12.5 64-22 <3 Rose 

F-52 12.5 58-28 <3 F52 

Northwestern Avenue 12.5 64-22 <3 NW 

HW 4 12.5 58-28 <3 HW4 

HWY 330 Int. 12.5 64-22 3-10 330I 

Jewell 12.5 64-22 3-10 Jewell 

HWY 330 Surface 12.5 64-22 3-10 330S 

I-80 Surface 12.5 64-22 >10 I80S 

I-235 Surface 12.5 70-28 >10 235S 

Altoona 12.5 64-22 >10 ALT 
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Table 3-2 Samples Tested at the Different Conditions 

Test Condition 1 Condition 2* Condition 3 Condition 4 Condition 5

Dynamic 

Modulus 
XXXXX   

XXXXX 

XXXXX 
 

Flow Number XXXXX XXXXX XXXXX XXXXX XXXXX 

AASHTO T283 XXXXX   XXXXX  

 * This condition was applied to five mixtures only. 

A summary of the experimental plan is presented in Figure 3-1. 

 

Figure 3-1 Summary of the Experimental Plan 
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3.2 Sample conditioning 

The conditioning of the samples was done in accordance with AASHTO T283 Resistance of 

Compacted Bituminous Mixture to Moisture Induced Damage (AASHTO 1993). Specimens 

were compacted according to section 4.2.3 in AASHTO T283 and divided into two subsets so 

that each subset had the same average air voids. The dry subset (control group) deviated from 

the standard specification as the samples were placed in an environmental chamber rather than 

being wrapped with plastic or placed in a heavy-duty, leak-proof plastic bag and stored in a 

water bath at 25±0.5°C for 2 hours ± 10 minutes prior to testing. The conditioning of the 

conditioned subset specimens was done by placing the samples in a pycnometer with a spacer. 

Approximately 25mm of water was placed above the specimen. The specimens were vacuum 

saturated for 5 to 10 minutes at 13-67 kPa. The specimens were left submerged in water bath 

for 5 to 10 minutes after vacuum saturating. The mass of the saturated, surface dry specimen 

was determined after partial vacuum saturation. Next, the volume of absorbed water was 

calculated. Finally, the degree of saturation was calculated. If the degree of saturation was 

between 70% and 80% testing proceeded. If the degree of saturation was less than 70%, the 

vacuum saturation procedure was repeated. If saturation was greater than 80%, the specimen 

was considered damaged and discarded. If the sample required a freeze/thaw cycle, each 

vacuum saturated specimen was tightly covered with plastic wrap and placed in a plastic bag 

with approximately 10±0.5 ml of water, and sealed. The plastic bags were then placed in a 

freezer at -18±3°C for a minimum of 16 hours. After the freeze/thaw cycle, the final steps are 

the same for moisture conditioning with or without freeze/thaw cycling. The next step is to 

place the samples in a water bath at 60±1°C for 24±1 hour with 25mm of water above the 

specimens. The specimens were then removed and placed in a water bath at 25±0.5°C for 2 

hours ± 10 minutes. Approximately 25mm of water should be above the specimens. Not more 

than 15 minutes should be required for the water bath to reach 25±0.5°C. If needed, ice could 

be used to prevent temperature increase. The specimens are then ready for testing.  
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3.3 Dynamic modulus test 

 The test setup was derived from NCHRP Report 547 (Witczak 2005). The test was 

performed using a universal servo-hydraulic testing system inside a temperature controlled 

environmental chamber that was set to the designated test temperature. The test was a strain 

controlled test, in which the strain was maintained at 80 microstrain to be able to capture the 

linear visco-elastic behavior of the material. The vertical deformation measurements were 

obtained using four LVDTs with a 100-mm gage length. They were attached to the specimen 

by aluminum buttons which were fixed on the specimen surface using Epoxy glue. One 

average strain measurement was obtained from the four LVDTs and this average strain was 

then used to control the test. The test setup is shown in Figure 3-2. 

 

Figure 3-2 Dynamic modulus test setup (NCHRP Report 547) 

The test was performed at two different temperatures (4 and 21°C) and nine frequencies (0.1, 

0.3, 0.5, 1.0, 3.0, 5.0, 10.0, 15.0, and 25.0Hz). At each frequency-temperature combination, the 

dynamic modulus value and the phase angle were calculated. The concept of time-temperature 

superposition was applied to the results from these temperatures and frequencies to develop a 
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master curve for each mix. The master curve can be used to predict the modulus at other 

temperatures and frequencies. The use of more frequencies and less temperatures is more 

practical because it reduces the testing time.  

3.4 Flow number test  

The testing procedure described herein was derived from NCHRP report 465 (Witzack et al. 

2002) and NCHRP report 513 (Bonaquist et al. 2003). This testing protocol has been referred 

to as Protocol W1: Simple Performance Test for Permanent Deformation Based Upon 

Repeated Load Test of Asphalt Concrete Mixtures. 

A 100-mm diameter by 150-mm high cylindrical specimen was tested under a repeated 

haversine compressive stress at a single effective temperature unconfined. A UTM 14P 

machine was used to conduct the tests with a temperature controlled testing chamber. The load 

was applied for a duration of 0.1-sec and a dwell period of 0.9-sec. No design axial stress 

levels have been stipulated in the NCHRP 465 or 513 Protocols. The deviator stress used in 

testing the sixteen mixtures was 600kPa (87psi) which is analogous to the load used in the 

Superpave gyratory compactor. Since no confining pressure was used, the axial stress is the 

deviator stress stated (600kPa). The effective test temperature was selected to be 37oC, which 

is representative of the effective rutting temperature in the state of Iowa. The temperature 

inside the environmental chamber was checked using a probe inserted in a dummy sample. The 

strains for these tests were measured directly through the machines actuator as opposed to 

affixing axial LVDTs to the sides of the specimen. Affixing axial LVDTs to the side of the 

specimen is not suitable to the test conditions because of the high deformation levels expected 

during the test. 

Specimens were placed in the testing chamber for a minimum of two hours as specified in 

Protocol W1 to ensure that the test temperature was obtained in the test specimens. After the 



www.manaraa.com

51 

 

 

 

test temperature had been reached, the specimen was then centered under the loading platens so 

as to not place an eccentric load on the specimen. The test was conducted in accordance with 

the aforementioned parameters. Depending on the test condition designated for the sample, the 

sample was either placed in water or not. The water in the container was at the designated test 

temperature. The test setup is shown in Figure 3-3. 

  

Figure 3-3 Flow Number Test Setup 

The loading regime was applied to the specimens for a total of 40,000 continuous cycles or 

until the specimen failed and results in excessive tertiary deformation, which ever occurred 

first. Excessive deformation was considered 100,000μstrain. The exact length of the test was 

variable from one mixture to the next because of the different material properties. 
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3.5 Indirect tensile strength testing 

The testing procedure described herein is derived from the AASHTO T283 Resistance of 

Compacted Bituminous Mixture to Moisture Induced Damage (AASHTO 1993). The indirect 

tensile strength of the dry and conditioned specimens was determined at 25°C. The specimen 

was placed between two bearing plates in the testing machine such that the load is applied 

along the diameter of the specimen as shown in Figure 3-4. A Universal Testing Machine was 

used to conduct the testing.  

 

Figure 3-4 Indirect Tensile Strength Test Setup 

The load is applied at a constant rate of movement of the testing machine head of 50mm per 

minute. The maximum load is recorded and placed in the equation 3-1 in order to calculate 

tensile strength. 
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Dt
PSt ××

×
=
π
2000

 (3-1) 

where: 

St = tensile strength (kPa), 

P = maximum load (N), 

t = specimen thickness (mm), and 

D = specimen diameter (mm). 

A numerical index or resistance of an HMA mixture to the effects of water is the ratio of the 

original strength that is retained to that of the moisture conditioned strength. 

1

2

S
STSR =

 (3-2) 

where: 

TSR = tensile strength ratio, 

S2 = average tensile strength of conditioned subset, and 

S1 = average tensile strength of dry subset. 
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CHAPTER 4 DYNAMIC MODULUS TEST RESULTS AND 

ANALYSIS 

4.1 Approach 

The dynamic modulus was performed on two groups of samples: control and moisture 

conditioned samples. The dynamic modulus values and phase angles were calculated for the 

mixes at the different frequency-temperature combinations. The approach of this analysis was 

to evaluate the change of dynamic modulus and its associated parameters (phase angle, storage 

modulus, and loss modulus) and see which of these parameters is linked directly to moisture 

damage. A visual representation of the results is presented by plotting the mastercurves for the 

different mixes for both the control and conditioned groups. 

4.2 Dynamic modulus test results 

The results of the dynamic modulus test and phase angle for both the control and conditioned 

groups are presented in appendix B. The E* ratios were then calculated by dividing the 

dynamic modulus results from the moisture conditioned group over those from the control 

group (Table 4-1). The lower the E* ratio, the greater the effect of moisture conditioning on a 

specific mix. The E* ratios appear to vary with test temperature and frequency. The general 

trend is that the E* ratio decreases with an increase in temperature and/or a decrease in 

frequency. This variation provides the impetus for performing a statistical analysis to check the 

variability in the results. The phase angle ratios are presented in Table 4-2. The increase in the 

phase angle ratio indicates greater moisture damage. The general trend is that the phase angle 

values increase with moisture conditioning. This means that the moisture conditioned samples 

are more viscous compared to the control samples. The phase angle ratio decreases with the 

decrease in test frequency and an increase in test temperature. 
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Table 4-1 E* Ratios 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz 

6N 4 0.97 0.93 1.01 0.89 0.86 0.84 0.79 0.83 0.78
6N 21 1.02 1.00 1.00 0.97 0.94 0.93 0.91 0.88 0.81
218 4 1.04 1.02 1.03 1.02 1.05 1.01 1.01 1.01 1.00
218 21 1.16 1.16 1.14 1.13 1.23 1.13 1.07 1.05 0.94
235I 4 0.90 0.88 0.88 0.87 0.83 0.84 0.84 0.84 0.84
235I 21 0.90 0.90 0.90 0.89 0.87 0.86 0.84 0.85 0.83
235s 4 1.15 1.13 1.14 1.13 1.18 1.12 1.11 1.11 1.09
235s 21 1.21 1.20 1.19 1.19 1.30 1.21 1.17 1.20 1.11
330B 4 0.93 0.92 0.95 0.93 0.96 0.91 0.91 0.93 0.93
330B 21 1.10 1.11 1.12 1.12 1.22 1.16 1.11 1.04 1.04
330I 4 1.07 1.04 1.04 1.03 1.03 1.02 0.99 1.02 1.01
330I 21 1.17 1.17 1.16 1.16 1.15 1.18 1.16 1.14 1.15
330s 4 0.99 0.99 0.98 0.98 0.96 0.94 0.93 0.92 0.89
330s 21 0.85 0.83 0.82 0.82 0.79 0.80 0.84 0.88 0.88
ALT 4 0.99 0.99 0.98 0.97 0.96 0.95 0.95 0.95 0.93
ALT 21 1.11 1.12 1.11 1.10 1.10 1.09 1.09 1.08 1.04
Ded 4 0.90 0.90 0.91 0.92 0.94 0.85 0.88 0.86 0.96
Ded 21 1.12 1.11 1.12 1.11 1.25 1.08 1.05 0.92 0.86
F52 4 1.02 1.02 1.02 1.02 0.98 0.95 0.96 0.92 0.85
F52 21 1.11 1.09 1.07 1.05 1.06 1.02 0.95 0.86 0.81

HW4 4 0.92 0.92 0.91 0.89 0.87 0.87 0.86 0.85 0.89
HW4 21 0.67 0.66 0.66 0.68 0.64 0.71 0.81 0.87 0.90
I80B 4 1.01 1.01 1.02 1.01 1.00 1.01 0.99 0.98 1.00
I80B 21 0.98 1.02 1.03 1.03 1.03 1.04 1.06 1.00 1.01
I80s 4 0.93 0.88 0.91 0.90 0.92 0.86 0.86 0.87 0.83
I80s 21 0.91 0.93 0.93 0.91 0.94 0.87 0.86 0.85 0.79

Jewell 4 1.06 1.03 1.04 1.01 1.06 1.00 0.99 1.00 0.98
Jewell 21 1.20 1.19 1.18 1.18 1.28 1.19 1.17 1.14 1.12
NW 4 0.91 0.89 0.90 0.90 0.92 0.89 0.87 0.88 0.88
NW 21 1.05 1.07 1.07 1.07 1.17 1.09 1.06 1.05 1.04
Rose 4 0.94 0.89 0.88 0.89 0.87 0.84 0.83 0.84 0.79
Rose 21 0.85 0.84 0.84 0.82 0.79 0.75 0.75 0.73 0.69
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Table 4-2 Phase Angle Ratios 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz 

6N 4 1.83 1.21 1.25 1.21 1.25 1.17 1.13 1.15 1.36
6N 21 1.14 1.12 1.12 1.13 1.13 1.12 1.14 1.15 1.08
218 4 1.19 1.01 1.09 1.07 1.06 1.10 1.06 1.06 1.24
218 21 1.03 1.02 1.02 1.02 0.98 1.01 1.03 1.02 1.00
235I 4 1.26 1.16 1.16 1.14 1.23 1.12 1.19 1.19 1.20
235I 21 1.08 1.09 1.08 1.07 1.04 1.06 1.02 1.05 1.03
235s 4 0.93 0.93 0.93 0.94 0.96 0.99 0.92 0.98 1.03
235s 21 0.99 0.99 1.00 1.00 0.96 1.00 0.96 1.02 0.99
330B 4 0.98 1.09 1.07 1.04 1.04 0.99 1.04 1.12 1.28
330B 21 1.06 1.00 1.00 1.00 0.97 1.00 0.93 1.02 1.00
330I 4 1.23 1.12 1.10 1.10 1.06 1.05 1.06 1.09 1.35
330I 21 1.01 1.00 1.00 1.00 0.97 0.99 0.95 0.99 1.00
330s 4 1.20 1.17 1.21 1.27 1.32 1.28 1.31 1.36 1.53
330s 21 1.11 1.11 1.12 1.14 1.12 1.17 1.13 1.18 1.26
ALT 4 2.25 1.28 1.17 1.13 1.12 1.12 1.16 1.20 1.38
ALT 21 1.05 1.03 1.02 1.03 1.01 1.04 1.05 1.03 1.05
Ded 4 1.12 1.05 1.06 1.03 1.07 0.97 0.96 1.05 1.25
Ded 21 1.02 0.99 0.98 0.99 0.99 1.01 1.00 1.02 1.10
F52 4 1.38 1.10 1.09 1.10 1.13 1.05 1.07 1.07 1.67
F52 21 1.05 1.05 1.07 1.06 1.00 1.05 1.08 1.10 1.05

HW4 4 1.22 1.20 1.15 1.16 1.25 1.11 1.15 1.09 1.09
HW4 21 1.15 1.17 1.21 1.27 1.25 1.32 1.39 1.39 1.45
I80B 4 1.22 1.18 1.12 1.10 1.11 1.09 1.03 1.00 1.03
I80B 21 0.97 0.99 1.01 1.02 1.01 1.00 0.97 0.99 1.04
I80s 4 1.73 1.30 1.28 1.24 1.20 1.16 1.17 1.26 1.50
I80s 21 1.14 1.14 1.13 1.13 1.15 1.12 1.15 1.16 1.19

Jewell 4 1.25 1.17 1.13 1.11 1.10 1.07 1.09 1.10 1.17
Jewell 21 0.97 0.99 0.99 0.99 0.98 0.97 0.98 0.98 0.92
NW 4 1.45 1.35 1.22 1.34 1.34 1.28 1.40 1.59 1.80
NW 21 1.30 1.28 1.26 1.25 1.25 1.25 1.24 1.32 1.26
Rose 4 1.17 1.09 1.11 1.10 1.15 1.06 1.03 1.06 1.26
Rose 21 1.04 1.02 1.03 1.03 1.00 1.01 1.00 0.97 0.93
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4.3 Statistical analysis 

A statistical analysis was performed to test the hypothesis that the results at different 

temperature-frequency combinations are statistically different. A pair-wise comparison using a 

level of significance (α) of 0.05 was performed between the ratios for the sixteen mixes at each 

of the temperature – frequency combinations to those at the other frequency-temperature 

combinations. The results of this statistical analysis are presented in Table 4-3 and show that 

there are statistical differences between the results. This means that the temperature and the 

loading frequency are significant factors and that they affect the extent of moisture damage to 

which the mix is subjected. The same analysis was performed on the phase angle ratio (Table 

4-4). The analysis also showed that many of the temperature-frequency combinations are 

statistically different from the other combinations. 

Figures 4-1 and 4-2 show the E* ratio distribution for all the mixes with respect to temperature 

and frequency, respectively.  It appears from Figure 4-1 that the range of ratios at 21οC is larger 

than that at 4οC. The Tukey-Kramer all pair comparison method was used to test whether the 

mixes are statistically different from each other or not. This was used to group the mixes that 

show no statistical difference from each other. The results of the comparison are presented in 

Tables 4-5 and 4-6 for the E* ratio and phase angle ratio results, respectively. Ranking of the 

mixes at the different temperature-frequency combinations using E* ratios are presented in 

Table 4-7, while those using phase angle ratios are presented in Table 4-8. 
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Table 4-3 Statistical Comparison between the Different Temperature-Frequency Combinations for E* Ratios* 

Temp‐
Freq. 

4-
15Hz 

4-
10Hz 4-5Hz 4-3Hz 4-1Hz 4-

0.5Hz 
4-

0.3Hz 
4-

0.1Hz 
21-

25Hz 
21-

15Hz 
21-

10Hz 
21-
5Hz 

21-
3Hz 

21-
1Hz 

21-
0.5Hz 

21-
0.3Hz 

21-
0.1Hz 

4-25Hz 0.0011 0.1652 0.0018 0.0591 0.0001 0.0001 0.0001 0.0008 0.1919 0.2087 0.2519 0.336 0.1698 0.5000 0.7161 0.6452 0.1379 

4-15Hz    0.0958 0.2506 0.7577 0.0001 0.0001 0.0002 0.0039 0.0722 0.0813 0.1013 0.1374 0.0837 0.2366 0.3186 0.8034 0.3511 

4-10Hz       0.0631 0.5643 0.0003 0.0004 0.0002 0.0025 0.1113 0.1244 0.1529 0.2118 0.1154 0.3482 0.5019 0.8812 0.2143 

4-5Hz          0.8056 0.0001 0.0001 0.0001 0.0038 0.0456 0.0511 0.0645 0.0893 0.0587 0.1711 0.2287 0.6528 0.4506 

4-3Hz             0.0006 0.0001 0.0001 0.0009 0.0339 0.0375 0.0490 0.0673 0.0385 0.1369 0.1868 0.6553 0.3667 

4-1Hz               0.0846 0.1321 0.1866 0.0075 0.0080 0.0104 0.0133 0.0145 0.0290 0.0244 0.0769 0.7566 

4-0.5Hz                 0.6091 0.4711 0.0039 0.0042 0.0055 0.0069 0.0084 0.0164 0.0127 0.0452 0.5411 

4-0.3Hz                   0.3351 0.0035 0.0038 0.0049 0.0062 0.0085 0.0153 0.0108 0.0350 0.5749 

4-0.1Hz                     0.0027 0.0027 0.0031 0.0033 0.0041 0.0070 0.0026 0.0107 0.2949 

21-25Hz                       0.8845 0.4546 0.1230 0.2473 0.1659 0.1010 0.0510 0.0175 

21-15Hz                         0.1380 0.0186 0.1997 0.1107 0.0810 0.0467 0.0154 

21-10Hz                            0.0362 0.1309 0.1826 0.1069 0.0608 0.0183 

21-5Hz                              0.0535 0.3466 0.1437 0.0731 0.0190 

21-3Hz                                0.0155 0.0337 0.0300 0.0123 

21-1Hz                                  0.2209 0.0929 0.0181 

21-0.5Hz                                    0.0817 0.0055 

21-0.3Hz                                      0.0047 

*Numbers in bold are statistically significant at α=0.05 
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Table 4-4 Statistical Comparison between the Different Temperature-Frequency Combinations for E* Ratios* 

Temp‐
Freq. 

4-
15Hz 

4-
10Hz 4-5Hz 4-3Hz 4-1Hz 4-

0.5Hz 
4-

0.3Hz 
4-

0.1Hz 
21-

25Hz 
21-

15Hz 
21-

10Hz 
21-
5Hz 

21-
3Hz 

21-
1Hz 

21-
0.5Hz 

21-
0.3Hz 

21-
0.1Hz 

4-25Hz 0.0152 0.0128 0.0151 0.0307 0.0078 0.0102 0.0305 0.8363 0.0043 0.0036 0.0044 0.0052 0.0028 0.0056 0.0039 0.0094 0.0105 

4-15Hz  0.2295 0.1674 0.9498 0.0197 0.0539 0.9251 0.0023 0.0012 0.0004 0.0009 0.0022 0.0002 0.0046 0.0059 0.0375 0.0563 

4-10Hz   0.7255 0.3183 0.0314 0.2543 0.6224 0.0012 0.0023 0.0006 0.0015 0.0048 0.0004 0.0116 0.0151 0.1055 0.1363 

4-5Hz    0.0680 0.0046 0.1146 0.3951 0.0004 0.0007 0.0001 0.0004 0.0020 0.0001 0.0060 0.0117 0.0806 0.1259 

4-3Hz     0.0015 0.0138 0.9599 0.0020 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0008 0.0090 0.0233 

4-1Hz     0.4392 0.0545 0.0002 0.0704 0.0150 0.0313 0.0919 0.0101 0.1352 0.1529 0.5820 0.5869 

4-0.5Hz     0.0209 0.0001 0.0379 0.0117 0.0272 0.0657 0.0091 0.0802 0.0958 0.3534 0.3936 

4-0.3Hz     0.0002 0.0042 0.0029 0.0077 0.0175 0.0033 0.0206 0.0291 0.0726 0.1019 

4-0.1Hz     0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0007 

21-25Hz     0.1762 0.5805 0.9067 0.1152 0.9632 0.7744 0.3241 0.5569 

21-15Hz     0.4156 0.2418 0.1907 0.4685 0.9118 0.1200 0.3477 

21-10Hz      0.1984 0.0563 0.5680 0.9324 0.1200 0.3816 

21-5Hz      0.0010 0.8996 0.5501 0.1420 0.4630 

21-3Hz      0.0109 0.2717 0.0045 0.0745 

21-1Hz      0.4995 0.0389 0.3265 

21-0.5Hz      0.0158 0.1850 

21-0.3Hz      0.8462 

*Numbers in bold are statistically significant at α=0.05  
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Figure 4-1 Distribution of E* Ratios at Different Temperatures 

 

 

Figure 4-2 Distribution of E* Ratios at Different Frequencies 
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Table 4-5 All Pair Comparison for E* Ratios* 

Mix Level Mean 
235s A           1.1633

Jewell A B         1.1011
330I A B         1.0939
218   B C       1.0667
ALT   B C       1.0283
330B   B C       1.0217
I80B   B C       1.0128
F52     C D     0.9867
Ded     C D     0.9856
NW     C D     0.9839
6N       D E   0.9089

330s         E F 0.8939
I80s         E F 0.8861
235I         E F 0.8644
Rose         E F 0.8239
HW4           F 0.8100

*Levels not connected by same letter are significantly different. 

Table 4-6 All Pair Comparison for Phase Angle Ratios* 

Mix Level Mean 
235s A     0.9733
330B A B    1.0350
Ded A B    1.0367
I80B A B    1.0489
NW A B    1.0533
218 A B    1.0561

Jewell A B    1.0589
330I A B C   1.0594
F52  B C D  1.1206
235I  B C D  1.1206
ALT  B C D  1.1733
6N   C D E 1.2050

330s    D E 1.2217
HW4    D E 1.2233
I80s    D E 1.2306
Rose     E 1.3433

*Levels not connected by same letter are significantly different. 
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Table 4-7 Ranking of Mixes Based on E* Ratio 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz

6N 4 9 9 7 13 15 15 16 16 16
218 4 4 4 4 3 3 3 2 3 4
235I 4 16 16 16 16 16 16 14 14 13
235s 4 1 1 1 1 1 1 1 1 1
330B 4 12 10 10 9 7 9 9 7 7
330I 4 2 2 3 2 4 2 5 2 2
330s 4 8 7 8 7 8 8 8 8 9
ALT 4 7 8 9 8 9 7 7 6 8
Ded 4 15 12 12 10 10 13 10 12 6
F52 4 5 5 5 4 6 6 6 9 12

HW4 4 13 11 13 14 14 11 13 13 10
I80B 4 6 6 6 5 5 4 3 5 3
I80s 4 11 15 11 11 12 12 12 11 14

Jewell 4 3 3 2 6 2 5 4 4 5
NW 4 14 13 14 12 11 10 11 10 11
Rose 4 10 14 15 15 13 14 15 15 15
6N 21 10 11 11 11 12 11 11 11 14
218 21 4 4 4 4 4 5 6 5 8
235I 21 13 13 13 13 13 13 13 14 12
235s 21 1 1 1 1 1 1 1 1 3
330B 21 8 7 5 5 5 4 4 7 6
330I 21 3 3 3 3 7 3 3 3 1
330s 21 15 15 15 15 14 14 14 10 10
ALT 21 6 5 7 7 8 6 5 4 4
Ded 21 5 6 6 6 3 8 9 9 11
F52 21 7 8 8 9 9 10 10 13 13

HW4 21 16 16 16 16 16 16 15 12 9
I80B 21 11 10 10 10 10 9 8 8 7
I80s 21 12 12 12 12 11 12 12 15 15

Jewell 21 2 2 2 2 2 2 2 2 2
NW 21 9 9 9 8 6 7 7 6 5
Rose 21 14 14 14 14 15 15 16 16 16
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Table 4-8 Ranking of Mixes Based on Phase Angle Ratio 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz

6N 4 15 13 15 13 14 14 10 11 11
218 4 5 2 4 4 3 9 7 5 6
235I 4 11 8 11 11 12 11 14 12 5
235s 4 1 1 1 1 1 2 1 1 1
330B 4 2 4 3 3 2 3 5 10 9
330I 4 9 7 6 7 4 5 6 8 10
330s 4 6 9 13 15 15 15 15 15 14
ALT 4 16 14 12 10 8 12 12 13 12
Ded 4 3 3 2 2 5 1 2 3 7
F52 4 12 6 5 6 9 4 8 6 15

HW4 4 7 12 10 12 13 10 11 7 3
I80B 4 8 11 8 5 7 8 4 2 2
I80s 4 14 15 16 14 11 13 13 14 13

Jewell 4 4 5 7 8 10 6 3 4 8
NW 4 10 10 9 9 6 7 9 9 4
Rose 4 13 16 14 16 16 16 16 16 16
6N 21 13 13 12 12 13 12 13 12 11
218 21 6 7 8 7 5 6 9 6 4
235I 21 11 11 11 11 11 11 8 10 7
235s 21 3 4 5 5 1 5 3 5 3
330B 21 10 5 3 4 2 4 1 7 6
330I 21 4 6 4 3 3 2 2 3 5
330s 21 12 12 13 14 12 14 12 14 15
ALT 21 13 13 12 12 13 12 13 12 11
Ded 21 8 9 7 8 9 9 10 9 9
F52 21 5 2 1 2 6 7 6 8 12

HW4 21 9 10 10 10 8 10 11 11 10
I80B 21 15 15 15 16 15 16 16 16 16
I80s 21 2 1 6 6 10 3 4 4 8

Jewell 21 14 14 14 13 14 13 14 13 13
NW 21 7 8 9 9 7 8 7 1 2
Rose 21 1 3 2 1 4 1 5 2 1
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4.4 Master curves 

The data from the dynamic modulus test was used to plot master curves for the different mixes. 

For each mix, the master curve for the control and moisture conditioned results are plotted 

together at a reference temperature of 21°C. Figures 4-3 through 4-18 present the master curves 

for the 16 mixes. It can be seen from the master curves that at low temperature and/or high 

frequencies, the moduli for the control and moisture conditioned samples are very close for all 

the mixtures with a possible increase in the dynamic modulus values for the moisture 

conditioned group. The values of the moduli start to be different when the temperature is 

increased and/or the frequency is decreased. The magnitude of the difference changes from one 

mixture to the other depending on the moisture susceptibility of the mixes. This means that 

developing the master curves provides a good means to visualize the effect of moisture on the 

mixes over the full range of the operating frequencies and temperatures. Only one of the 

sixteen mixtures (330S) did not follow this trend, the moisture conditioned samples modulus 

increased at higher temperatures and/or lower frequencies. 

For the mixes studied under this project, the area under the master curve was calculated to 

quantify the difference caused by moisture conditioning. Based on the previous discussion, the 

area under the master curve had to be split into two zones. The first zone is for frequencies 

lower than 10Hz at the reference temperature, which represents the high temperature-low 

frequency zone. The second zone is for frequencies higher than 10Hz, which represents the low 

temperature-high frequency zone.  The results are shown in Table 4-9. The results show that 

splitting the area under the master curve can be used to provide a good distinction between the 

different mixes when it comes to moisture susceptibility. The distinction is very clear at the 

high temperature-low frequency zone. 
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Figure 4-3 Master Curve for Mix 6N 

 

Figure 4-4 Master Curve for Mix 218 
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Figure 4-5 Master Curve for Mix 235I 

 

Figure 4-6 Master Curve for Mix 235S 
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Figure 4-7 Master Curve for Mix 330B 

 

Figure 4-8 Master Curve for Mix 330I 
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Figure 4-9 Master Curve for Mix 330S 

 

Figure 4-10 Master Curve for Mix ALT 
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Figure 4-11 Master Curve for Mix Ded 

 

Figure 4-12 Master Curve for Mix F52 
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Figure 4-13 Master Curve for Mix HW4 

 

Figure 4-14 Master Curve for Mix I80B 
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Figure 4-15 Master Curve for Mix I80S 

 

Figure 4-16 Master Curve for Mix NW 
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Figure 4-17 Master Curve for Mix Rose 

 

Figure 4-18 Master Curve for Mix Jewell 
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Table 4-9 Area Under the Master Curve (GPa.s) 

Mix 
Name 

High temperature-low frequency Low temperature-high frequency 
Control Conditioned Diff. Ratio Control Conditioned Diff. Ratio 

6N 21.36 17.13 4.24 0.80 171.93 203.46 -31.53 1.18
218 22.60 20.79 1.81 0.92 191.39 217.65 -26.25 1.14
235I 19.20 15.97 3.23 0.83 204.55 188.96 15.59 0.92
235s 21.22 22.73 -1.51 1.07 195.33 246.01 -50.69 1.26
330B 17.75 17.43 0.33 0.98 183.17 187.41 -4.25 1.02
330I 24.87 28.08 -3.21 1.13 240.96 267.49 -26.53 1.11
330s 32.76 29.96 2.80 0.91 230.22 234.06 -3.84 1.02
ALT 40.29 41.41 -1.12 1.03 288.35 302.73 -14.37 1.05
Ded 9.87 8.62 1.25 0.87 135.57 145.16 -9.60 1.07
F52 15.60 13.92 1.68 0.89 185.98 211.12 -25.14 1.14

HW4 17.31 12.79 4.52 0.74 178.18 182.19 -4.01 1.02
I80B 25.98 25.59 0.39 0.98 233.98 246.23 -12.25 1.05
I80s 36.84 28.07 8.77 0.76 246.28 247.59 -1.31 1.01

Jewell 23.77 25.41 -1.64 1.07 206.92 238.67 -31.74 1.15
NW 19.99 19.48 0.50 0.97 201.45 200.64 0.81 1.00
Rose 38.12 26.75 11.37 0.70 230.32 222.73 7.59 0.97

 

4.5 Storage and loss moduli 

The dynamic modulus and phase angle were used to calculate the storage and loss moduli for 

all the mixes the storage modulus ratio is the storage modulus of the control mix divided by 

that of the moisture conditioned mix.  Table 4-10 presents the storage modulus ratios for all the 

temperature-frequency combinations.  The same was done for the loss modulus and the results 

for the loss modulus ratios are presented in Table 4-11.  The results of the storage modulus 

ratios show that although the ratios have a trend within the same mix, there is no specific trend 

between the mixes.  The ratios are sometimes higher than one and sometimes lower and this 

makes these values inconclusive when it comes to the effect on the mix performance. For the 

case of the loss modulus ratios, the results do not have a specific trend within the mixes. 
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Table 4-10 Storage Modulus Ratios 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz 

6N 4 0.96 0.92 1.01 0.89 0.85 0.84 0.78 0.82 0.75
6N 21 1.02 0.99 0.98 0.95 0.92 0.91 0.88 0.84 0.78
218 4 1.04 1.02 1.03 1.02 1.05 1.01 1.01 1.00 0.98
218 21 1.16 1.16 1.13 1.13 1.23 1.13 1.06 1.04 0.94
235I 4 0.90 0.88 0.87 0.86 0.82 0.83 0.83 0.83 0.82
235I 21 0.90 0.89 0.89 0.88 0.86 0.84 0.84 0.84 0.82
235s 4 1.15 1.13 1.14 1.13 1.18 1.13 1.11 1.11 1.09
235s 21 1.21 1.21 1.19 1.19 1.31 1.21 1.19 1.19 1.11
330B 4 0.93 0.92 0.95 0.93 0.96 0.91 0.91 0.92 0.91
330B 21 1.10 1.11 1.12 1.12 1.23 1.16 1.14 1.03 1.04
330I 4 1.07 1.03 1.04 1.03 1.02 1.02 0.99 1.02 0.99
330I 21 1.17 1.17 1.16 1.16 1.15 1.18 1.17 1.14 1.15
330s 4 0.99 0.99 0.98 0.97 0.96 0.93 0.92 0.91 0.87
330s 21 0.84 0.82 0.81 0.81 0.78 0.79 0.83 0.85 0.84
ALT 4 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.91
ALT 21 1.11 1.11 1.11 1.10 1.10 1.08 1.08 1.07 1.02
Ded 4 0.90 0.90 0.91 0.92 0.93 0.85 0.88 0.86 0.90
Ded 21 1.12 1.12 1.12 1.11 1.25 1.07 1.05 0.91 0.81
F52 4 1.01 1.01 1.02 1.02 0.97 0.95 0.96 0.91 0.73
F52 21 1.10 1.08 1.06 1.04 1.05 1.01 0.92 0.82 0.80

HW4 4 0.92 0.91 0.90 0.89 0.86 0.86 0.85 0.84 0.87
HW4 21 0.66 0.65 0.65 0.65 0.61 0.67 0.74 0.79 0.79
I80B 4 1.01 1.01 1.02 1.01 1.00 1.00 0.99 0.98 1.00
I80B 21 0.98 1.03 1.03 1.03 1.03 1.04 1.07 1.00 0.99
I80s 4 0.93 0.88 0.91 0.89 0.91 0.86 0.86 0.86 0.81
I80s 21 0.90 0.92 0.92 0.90 0.93 0.86 0.83 0.82 0.75

Jewell 4 0.91 0.89 0.89 0.89 0.92 0.88 0.86 0.87 0.86
Jewell 21 1.06 1.07 1.07 1.07 1.18 1.10 1.07 1.06 1.08
NW 4 0.94 0.88 0.88 0.89 0.86 0.84 0.82 0.83 0.77
NW 21 0.84 0.83 0.83 0.81 0.77 0.73 0.72 0.69 0.65
Rose 4 1.05 1.03 1.04 1.00 1.06 1.00 0.99 1.00 0.96
Rose 21 1.19 1.19 1.17 1.17 1.28 1.19 1.17 1.15 1.16
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Table 4-11 Loss Modulus Ratios 

Mix 
Name Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz 

6N 4 1.77 1.12 1.26 1.08 1.07 0.98 0.89 0.95 1.05
6N 21 1.16 1.12 1.11 1.08 1.05 1.03 1.02 0.99 0.86
218 4 1.24 1.04 1.12 1.09 1.12 1.11 1.07 1.07 1.22
218 21 1.20 1.18 1.16 1.15 1.20 1.14 1.10 1.07 0.94
235I 4 1.13 1.02 1.01 0.99 1.02 0.93 1.00 1.00 1.00
235I 21 0.98 0.97 0.97 0.95 0.91 0.90 0.86 0.89 0.85
235s 4 1.06 1.05 1.06 1.06 1.13 1.11 1.02 1.08 1.13
235s 21 1.20 1.19 1.20 1.19 1.25 1.22 1.13 1.22 1.10
330B 4 0.91 1.00 1.02 0.97 1.00 0.90 0.95 1.03 1.19
330B 21 1.16 1.11 1.12 1.12 1.19 1.16 1.04 1.06 1.04
330I 4 1.31 1.16 1.14 1.13 1.09 1.07 1.05 1.12 1.36
330I 21 1.18 1.17 1.16 1.16 1.11 1.16 1.10 1.12 1.15
330s 4 1.19 1.15 1.19 1.24 1.27 1.20 1.21 1.25 1.36
330s 21 0.94 0.91 0.92 0.93 0.88 0.93 0.94 1.03 1.09
ALT 4 2.23 1.26 1.14 1.09 1.07 1.07 1.10 1.14 1.27
ALT 21 1.16 1.15 1.14 1.13 1.11 1.14 1.15 1.11 1.08
Ded 4 1.01 0.95 0.96 0.95 1.00 0.82 0.85 0.90 1.17
Ded 21 1.14 1.10 1.10 1.10 1.24 1.09 1.05 0.94 0.92
F52 4 1.40 1.12 1.11 1.12 1.11 1.00 1.03 0.98 1.34
F52 21 1.16 1.14 1.14 1.10 1.06 1.07 1.02 0.93 0.85

HW4 4 1.12 1.10 1.05 1.04 1.08 0.96 0.99 0.93 0.96
HW4 21 0.77 0.77 0.80 0.85 0.79 0.92 1.09 1.18 1.25
I80B 4 1.23 1.20 1.14 1.11 1.12 1.09 1.02 0.97 1.04
I80B 21 0.96 1.01 1.04 1.05 1.04 1.04 1.02 0.99 1.05
I80s 4 1.61 1.14 1.16 1.11 1.10 1.00 1.01 1.09 1.24
I80s 21 1.03 1.06 1.05 1.02 1.08 0.98 0.98 0.97 0.93

Jewell 4 1.14 1.04 1.01 1.00 1.01 0.95 0.95 0.96 1.02
Jewell 21 1.02 1.05 1.05 1.05 1.15 1.06 1.04 1.03 0.97
NW 4 1.36 1.19 1.07 1.19 1.16 1.08 1.16 1.33 1.41
NW 21 1.10 1.07 1.06 1.02 0.97 0.93 0.92 0.95 0.85
Rose 4 1.24 1.13 1.16 1.11 1.22 1.06 1.02 1.06 1.23
Rose 21 1.24 1.22 1.21 1.21 1.28 1.21 1.17 1.11 1.05
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4.6 Comparison between E* ratio and master curve 

A paired t-test was used to compare the significance of the difference between the dynamic 

modulus results of the conditioned and the unconditioned group.  A similar comparison was 

done to compare the difference between the master curves of both groups.  The results of both 

comparisons are presented in Table 4-12 with a level of significance (α) = 0.05.  The results 

show that the two methods yield different conclusions for some of the mixes. 

Table 4-12 Statistical Comparisons for E* and Master Curves 

Mix 
Name 

Dynamic Modulus Master Curve 
α Indication α Indication 

6N 0.0009 Statistically different 0.0075 Statistically different 
218 0.0001 Statistically different 0.0006 Statistically different 
235I <0.0001 Statistically different <0.0001 Statistically different 
235s <0.0001 Statistically different <0.0001 Statistically different 
330B 0.2910 Statistically the Same 0.0225 Statistically the Same 
330I <0.0001 Statistically different <0.0001 Statistically different 
330s <0.0001 Statistically different 0.8558 Statistically the Same 
ALT 0.7355 Statistically the Same <0.0001 Statistically different 
Ded 0.0618 Statistically the Same 0.0216 Statistically different 
F52 0.8781 Statistically the Same 0.0003 Statistically different 

HW4 <0.0001 Statistically different 0.9622 Statistically the Same 
I80B 0.0124 Statistically the Same 0.0032 Statistically different 
I80s <0.0001 Statistically different 0.0666 Statistically the Same 

Jewell <0.0001 Statistically different <0.0001 Statistically different 
NW 0.0208 Statistically different 0.2803 Statistically the Same 
Rose <0.0001 Statistically different <0.0001 Statistically different 

4.7 Dynamic modulus test conclusions 

The dynamic modulus ratio gives a good evaluation for the moisture susceptibility of the 

mixes. It provides a distinction between the mixes and the results can be used in modeling the 

mix performance. The E* ratio results are dependent on the testing conditions (temperature and 
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frequency).  This means that the results from the dynamic modulus test need to be coupled with 

some evaluation tool related to the expected in-situ conditions of the pavement.  This implies 

that simulation is necessary in this case.  This can be done either by modeling or by simulating 

the results in the M-EPDG.  Another easy approach that can be used is to plot the master curve 

of the control and conditioned groups then compare the results to have a visual representation 

of the effect of moisture on the various working conditions.  The area under the master curve 

can be used to quantify the effect of moisture damage provided that a range of frequencies be 

selected to reflect the expected aite conditions for the pavement. The phase angle ratios show 

that the materials tend to be more viscous with moisture conditioning. The storage and loss 

moduli ratios are not recommended as tools to evaluate moisture damage because of the scatter 

in the data and the mixed results. 
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CHAPTER 5 FLOW NUMBER TEST RESULTS AND ANALYSIS 

5.1 Test results 

In this chapter, the flow number results are presented and discussed. As mentioned earlier in 

the experimental plan, the test followed the NCHRP report 465 (Witzack et al. 2002) and 

NCHRP report 513 (Bonaquist et al. 2003) procedure and calculation method. The 

calculation method was discussed in the literature review. The flow number test is known for 

its variability. The test is also known to be a good representation of the field’s loading 

conditions. Good simulation of the field loading conditions was the reason for including this 

test in this study. Several outputs, other than the flow number can be calculated from this 

test. The number of cycles at which the test stops, the total strain at the end of the test, the 

flow number, and the strain at the flow number are general outputs that can be calculated 

from this test. These results are shown in Tables 5-1 through 5-5. By looking at the results, 

the following can be concluded. The number of cycles at which the test ends is not a reliable 

measure because it occurs either by the specimen failure or by reaching the machine test 

limit, which is 40,000 cycles. The strain at failure is constant when the sample reaches 

failure. The flow number is the main output of this test and it can be seen that it has very high 

variability, the same goes with the strain at flow number. 

The previous discussion leads to the need to have a different analysis method for the test. 

Two approaches were incorporated in this study. The first approach was to have a designated 

strain level and to get the corresponding number of cycles. A strain level of 30,000 

microstrain was selected for this purpose. The second approach was to apply the Ohio State 

Model on the test results and see if the parameters “A” and “m” are affected by moisture 

conditioning or not. Mainly parameter “m” was taken into consideration because this 

parameter is a function of the material properties as discussed in the literature review. 
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Table 5-1 Flow Number Results for Control Samples 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

6N Mean 10482 100158 1761 10109.5 6778 1.96E-04 0.5515 
6N Std 6829 113 1137 662.4 4553 3.40E-05 0.0815 
6N CoV (%) 65.1 0.1 64.6 6.6 67.2 17.4 14.8 
218 Mean 2936 100713 534 10046.8 1709 1.62E-04 0.6571 
218 Std 620 1086 118 1205.8 376 1.44E-05 0.0182 
218 CoV (%) 21.1 1.1 22.1 12.0 22.0 8.9 2.8 
235I Mean 9828 100103 2522 15799.7 5648 2.71E-04 0.5182 
235I Std 1395 43 474 1142.7 882 6.13E-05 0.0158 
235I CoV (%) 14.2 0.0 18.8 7.2 15.6 22.6 3.1 
235S Mean 37063 72736 14840 15164.5 28798 1.58E-04 0.4710 
235S Std 4448 28004 4645 1318.3 6442 1.95E-05 0.0066 
235S CoV (%) 12.0 38.5 31.3 8.7 22.4 12.3 1.4 
330B Mean 1337 102026 248 10413.7 760 2.08E-04 0.7088 
330B Std 157 964 48 1385.3 107 2.05E-05 0.0073 
330B CoV (%) 11.7 0.9 19.2 13.3 14.1 9.8 1.0 
330I Mean 4033 100375 876 10038.9 2719 1.64E-04 0.6037 
330I Std 238 76 104 1276.7 179 1.89E-05 0.0081 
330I CoV (%) 5.9 0.1 11.9 12.7 6.6 11.5 1.3 
330S Mean 31353 53670 19533 12968.3 28392 1.20E-04 0.4918 
330S Std 11892 43193 15275 1840.9 14644 2.05E-05 0.0380 
330S CoV (%) 37.9 80.5 78.2 14.2 51.6 17.1 7.7 
Alt Mean 34361 48319 12990 8988.1 31893 1.58E-04 0.4326 
Alt Std 7922 47323 6881 726.5 11168 3.32E-05 0.0181 
Alt CoV (%) 23.1 97.9 53.0 8.1 35.0 21.0 4.2 
Ded Mean 583 101831 206 30704.3 317 3.24E-04 0.8072 
Ded Std 161 1525 154 38352.8 98 1.50E-04 0.1856 
Ded CoV (%) 27.6 1.5 75.0 124.9 30.8 46.2 23.0 
F52 Mean 1191 102520 290 9838.8 855 2.39E-04 0.6593 
F52 Std 311 1292 88 847.8 217 1.64E-05 0.0204 
F52 CoV (%) 26.1 1.3 30.5 8.6 25.4 6.9 3.1 

HW4 Mean 8485 101288 1941 11437.2 6062 2.69E-04 0.6229 
HW4 Std 11163 1517 2461 941.8 8134 9.72E-05 0.1248 
HW4 CoV (%) 131.6 1.5 126.8 8.2 134.2 36.1 20.0 
I80B Mean 4780 100298 963 9372.0 3191 1.27E-04 0.6248 
I80B Std 599 146 224 1103.6 428 1.24E-05 0.0197 
I80B CoV (%) 12.5 0.1 23.3 11.8 13.4 9.8 3.2 
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Table 5-1 (continued) 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

I80S Mean 30645 48972 10912 9866.9 28519 4.17E-04 0.3883 
I80S Std 12830 46700 13892 4183.0 15730 4.43E-04 0.0871 
I80S CoV (%) 41.9 95.4 127.3 42.4 55.2 106.1 22.4 

Jewell Mean 5484 100171 1515 16423.7 3135 3.35E-04 0.5307 
Jewell Std 1048 61 393 2316.0 672 6.93E-05 0.0241 
Jewell CoV (%) 19.1 0.1 25.9 14.1 21.4 20.7 4.5 
NW Mean 3211 100293 701 11935.1 1930 2.26E-04 0.6048 
NW Std 627 131 193 1206.5 422 9.91E-06 0.0202 
NW CoV (%) 19.5 0.1 27.6 10.1 21.9 4.4 3.3 
Rose Mean 34169 45509 5640 6748.6 30984 1.07E-04 0.4629 
Rose Std 7984 52628 3488 5326.6 12334 3.07E-05 0.0734 
Rose CoV (%) 23.4 115.6 61.9 78.9 39.8 28.7 15.9 

Table 5-2 Flow Number Results for Water Conditioned Samples Tested Under Water 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

6N Mean 1733 100601 539 18394.4 971 6.44E-04 0.5348 
6N Std 319 205 289 5026.3 202 1.00E-04 0.0184 
6N CoV (%) 18.4 0.2 53.6 27.3 20.8 15.6 3.4 
218 Mean 2893 100225 648 16453.2 1473 5.69E-04 0.5179 
218 Std 693 101 109 2110.8 385 6.71E-05 0.0202 
218 CoV (%) 24.0 0.1 16.8 12.8 26.1 11.8 3.9 
235I Mean 11120 100114 3398 23700.2 5159 1.09E-03 0.3766 
235I Std 3657 27 1318 4027.8 1962 1.47E-04 0.0204 
235I CoV (%) 32.9 0.0 38.8 17.0 38.0 13.5 5.4 
235S Mean 30867 100091 13245 22644.8 19513 7.36E-04 0.3573 
235S Std 3483 38 6130 6419.6 2450 3.10E-04 0.0562 
235S CoV (%) 11.3 0.0 46.3 28.3 12.6 42.1 15.7 
330B Mean 920 100642 227 17567.4 436 5.35E-04 0.6457 
330B Std 70 62 20 836.0 42 1.15E-04 0.0369 
330B CoV (%) 7.7 0.1 8.8 4.8 9.6 21.5 5.7 
330I Mean 6522 100380 1274 11350.0 4636 7.47E-04 0.3805 
330I Std 1317 223 154 1152.4 841 1.22E-04 0.0171 
330I CoV (%) 20.2 0.2 12.1 10.2 18.1 16.3 4.5 
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Table 5-2 (continued) 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

330S Mean 4521 100223 1150 17129.3 2502 7.24E-04 0.4572 
330S Std 642 82 281 3034.7 465 3.26E-04 0.0381 
330S CoV (%) 14.2 0.1 24.4 17.7 18.6 45.1 8.3 
Alt Mean 29370 44178 6085 10011.4 24831 8.58E-04 0.3022 
Alt Std 17337 36708 5257 4873.2 15801 1.81E-04 0.0301 
Alt CoV (%) 59.0 83.1 86.4 48.7 63.6 21.1 10.0 
Ded Mean 272 101854 77 22384.1 115 1.27E-03 0.6711 
Ded Std 40 350 11 1433.8 22 4.73E-04 0.0479 
Ded CoV (%) 14.8 0.3 14.8 6.4 19.5 37.2 7.1 
F52 Mean 796 101482 209 13805.9 519 8.26E-04 0.5276 
F52 Std 153 308 48 1018.5 118 6.41E-05 0.0227 
F52 CoV (%) 19.2 0.3 23.1 7.4 22.8 7.8 4.3 

HW4 Mean 742 100792 199 21502.0 315 9.48E-04 0.5919 
HW4 Std 94 157 54 3861.2 61 1.52E-04 0.0446 
HW4 CoV (%) 12.6 0.2 26.9 18.0 19.4 16.0 7.5 
I80B Mean 11541 100117 3106 17036.8 6928 8.85E-04 0.3759 
I80B Std 1637 46 2248 3093.7 1734 3.02E-04 0.0436 
I80B CoV (%) 14.2 0.0 72.4 18.2 25.0 34.1 11.6 
I80S Mean 12408 100206 1797 16057.6 7059 8.58E-04 0.3934 
I80S Std 11020 248 265 4354.3 6615 2.91E-04 0.0640 
I80S CoV (%) 88.8 0.2 14.7 27.1 93.7 34.0 16.3 

Jewell Mean 7321 100150 1602 15512.0 4275 8.47E-04 0.3956 
Jewell Std 1191 51 300 1793.6 642 2.10E-04 0.0293 
Jewell CoV (%) 16.3 0.1 18.7 11.6 15.0 24.8 7.4 
NW Mean 4863 100206 1135 18815.5 2455 1.09E-03 0.4117 
NW Std 878 92 333 5061.9 626 4.56E-04 0.0438 
NW CoV (%) 18.1 0.1 29.3 26.9 25.5 41.8 10.6 
Rose Mean 9237 100287 2325 16733.8 5462 6.59E-04 0.4153 
Rose Std 2756 157 549 1451.1 1280 4.57E-05 0.0126 
Rose CoV (%) 29.8 0.2 23.6 8.7 23.4 6.9 3.0 
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Table 5-3 Flow Number Results for Freezer Conditioned Samples Tested in Air 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

6N Mean 7266 100233 2194 15860.6 4177 4.76E-04 0.5088 
6N Std 9273 124 3234 2481.7 5397 2.19E-04 0.0554 
6N CoV (%) 127.6 0.1 147.4 15.6 129.2 46.1 10.9 
218 Mean 2659 100253 494 9715.5 1621 2.14E-04 0.6210 
218 Std 534 49 126 1889.8 359 5.97E-05 0.0534 
218 CoV (%) 20.1 0.0 25.4 19.5 22.2 27.9 8.6 
235I Mean 14568 100095 4146 18134.5 7964 4.43E-04 0.4512 
235I Std 6431 38 2381 3629.1 3533 1.38E-04 0.0124 
235I CoV (%) 44.1 0.0 57.4 20.0 44.4 31.2 2.8 
235S Mean 31344 68986 16603 16883.5 26316 3.10E-04 0.4289 
235S Std 11434 42610 12112 1605.3 13970 1.51E-04 0.0629 
235S CoV (%) 36.5 61.8 72.9 9.5 53.1 48.8 14.7 
330B Mean 1063 100690 229 13476.8 564 3.18E-04 0.6905 
330B Std 136 62 24 764.6 87 5.18E-05 0.0231 
330B CoV (%) 12.8 0.1 10.4 5.7 15.3 16.3 3.3 
330I Mean 6044 100278 1332 9936.4 4274 2.29E-04 0.5229 
330I Std 619 77 477 3961.1 336 8.37E-05 0.0212 
330I CoV (%) 10.2 0.1 35.8 39.9 7.9 36.6 4.1 
330S Mean 18210 77861 5200 13417.8 12681 4.36E-04 0.4793 
330S Std 19901 33817 6425 2866.0 14246 3.66E-04 0.0955 
330S CoV (%) 109.3 43.4 123.6 21.4 112.3 83.9 19.9 
Alt Mean 27123 43836 8250 10750.5 25081 4.12E-04 0.3748 
Alt Std 8202 34436 5164 3314.9 9531 2.38E-04 0.0624 
Alt CoV (%) 30.2 78.6 62.6 30.8 38.0 57.8 16.7 
Ded Mean 612 101324 170 19808.6 289 7.40E-04 0.6398 
Ded Std 51 151 17 1262.3 19 8.96E-05 0.0273 
Ded CoV (%) 8.4 0.1 10.2 6.4 6.7 12.1 4.3 
F52 Mean 956 101948 218 9280.3 689 3.09E-04 0.6364 
F52 Std 196 244 74 1632.7 148 5.82E-05 0.0370 
F52 CoV (%) 20.5 0.2 34.1 17.6 21.4 18.8 5.8 

HW4 Mean 4142 100542 1007 16740.1 2426 5.55E-04 0.5559 
HW4 Std 6490 256 1539 588.6 3961 6.68E-05 0.0843 
HW4 CoV (%) 156.7 0.3 152.9 3.5 163.3 12.0 15.2 
I80B Mean 10813 100190 2089 9283.4 7658 2.17E-04 0.5276 
I80B Std 5209 68 1310 4097.3 4047 1.49E-04 0.1042 
I80B CoV (%) 48.2 0.1 62.7 44.1 52.8 68.6 19.7 
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Table 5-3 (continued) 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

I80S Mean 15532 100140 4849 14312.7 10302 2.32E-04 0.5011 
I80S Std 9485 69 4137 2847.1 6917 7.86E-05 0.0581 
I80S CoV (%) 61.1 0.1 85.3 19.9 67.1 33.8 11.6 

Jewell Mean 4460 82266 1133 10999.1 2941 3.39E-04 0.5291 
Jewell Std 1737 40083 292 2251.2 979 1.99E-04 0.1143 
Jewell CoV (%) 39.0 48.7 25.8 20.5 33.3 58.9 21.6 
NW Mean 5011 100178 1186 13828.5 2981 3.50E-04 0.5192 
NW Std 1040 71 324 1936.1 699 6.08E-05 0.0338 
NW CoV (%) 20.8 0.1 27.3 14.0 23.5 17.4 6.5 
Rose Mean 19326 102306 4348 15918.6 11493 3.50E-04 0.4601 
Rose Std 11810 4954 3013 4389.7 7806 9.78E-05 0.0392 
Rose CoV (%) 61.1 4.8 69.3 27.6 67.9 27.9 8.5 

Table 5-4 Flow Number Results for Freezer Conditioned Samples Tested Under Water 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A M 

6N Mean 5374 100289 1085 13192.7 3414 5.79E-04 0.4536 
6N Std 2570 72 450 2811.4 1819 1.80E-04 0.0247 
6N CoV (%) 47.8 0.1 41.5 21.3 53.3 31.1 5.4 
218 Mean 3499 100200 732 12925.8 1991 3.32E-04 0.5585 
218 Std 173 52 98 1615.2 81 9.29E-05 0.0397 
218 CoV (%) 4.9 0.1 13.3 12.5 4.0 28.0 7.1 
235I Mean 20844 100056 3447 11771.7 12639 5.11E-04 0.4430 
235I Std 9582 289 1828 5942.8 4783 3.91E-04 0.1472 
235I CoV (%) 46.0 0.3 53.0 50.5 37.8 76.6 33.2 
235S Mean 39696 51494 13895 14446.7 31893 5.09E-04 0.3470 
235S Std 680 31811 5853 4838.6 5335 1.70E-04 0.0378 
235S CoV (%) 1.7 61.8 42.1 33.5 16.7 33.3 10.9 
330B Mean 3449 94900 791 16126.5 1663 4.12E-04 0.5750 
330B Std 1016 11876 323 2220.3 641 2.30E-04 0.0981 
330B CoV (%) 29.5 12.5 40.9 13.8 38.5 55.8 17.1 
330I Mean 12863 100184 3992 13671.1 9113 4.05E-04 0.4204 
330I Std 1480 92 1129 2637.5 1037 9.91E-05 0.0328 
330I CoV (%) 11.5 0.1 28.3 19.3 11.4 24.5 7.8 
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Table 5-4 (continued) 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

330S Mean 26165 50252 5420 11642.7 25015 8.90E-04 0.3077 
330S Std 17400 45863 3966 4570.3 18959 2.70E-04 0.0788 
330S CoV (%) 66.5 91.3 73.2 39.3 75.8 30.3 25.6 
Alt Mean 40000 15018 35335 11674.3 33927 3.93E-04 0.3634 
Alt Std 0 3311 4366 2745.4 13562 3.49E-04 0.0861 
Alt CoV (%) 0.0 22.0 12.4 23.5 40.0 88.6 23.7 
Ded Mean 994 100736 245 17923.5 484 6.25E-04 0.6274 
Ded Std 176 296 77 4548.7 121 2.99E-04 0.0610 
Ded CoV (%) 17.7 0.3 31.4 25.4 24.9 47.8 9.7 
F52 Mean 1496 101070 414 13077.5 998 6.19E-04 0.5267 
F52 Std 734 329 298 3155.3 480 1.99E-04 0.0625 
F52 CoV (%) 49.1 0.3 72.0 24.1 48.1 32.2 11.9 

HW4 Mean 5723 96944 2153 19910.5 3304 6.68E-04 0.5115 
HW4 Std 8186 7813 3571 2591.8 5063 1.76E-04 0.0869 
HW4 CoV (%) 143.0 8.1 165.9 13.0 153.2 26.4 17.0 
I80B Mean 18615 100103 3167 9518.9 13432 4.71E-04 0.3725 
I80B Std 3885 24 1192 2745.1 3576 1.20E-04 0.0153 
I80B CoV (%) 20.9 0.0 37.6 28.8 26.6 25.4 4.1 
I80S Mean 24347 68181 8990 12669.6 20032 5.40E-04 0.3889 
I80S Std 12389 43780 8766 3521.3 13401 4.45E-04 0.0656 
I80S CoV (%) 50.9 64.2 97.5 27.8 66.9 82.3 16.9 

Jewell Mean 10510 69888 2479 14184.5 7326 8.90E-04 0.3600 
Jewell Std 3520 41818 566 3064.1 1651 3.93E-04 0.0648 
Jewell CoV (%) 33.5 59.8 22.8 21.6 22.5 44.1 18.0 
NW Mean 6707 100120 1973 21244.7 3234 7.76E-04 0.4398 
NW Std 1178 44 696 1776.9 917 2.05E-04 0.0326 
NW CoV (%) 17.6 0.0 35.2 8.4 28.4 26.5 7.4 
Rose Mean 26033 82459 7182 14066.7 18615 5.63E-04 0.3650 
Rose Std 7953 39568 4131 3840.8 12014 1.49E-04 0.0665 
Rose CoV (%) 30.5 48.0 57.5 27.3 64.5 26.4 18.2 
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Table 5-5 Flow Number Results for Unconditioned Samples Tested Under Water 

Mix  

Cycles 
to 

Failure 

Strain at 
failure 

(microstrain) 

Flow 
Number 

(FN) 

Strain at FN 
(microstrain) 

Cycles at 
30,000 

microstrain 
A m 

235I Mean 11976 100104 2700 16116.2 6634 5.36E-04 0.4350 
235I Std 2255 43 1480 5546.5 1445 2.15E-04 0.0422 
235I CoV 18.8 0.0 54.8 34.4 21.8 40.1 9.7 
235S Mean 27012 100126 8640 21260.6 16694 6.89E-04 0.3669 
235S Std 5834 78 1548 4891.6 3858 3.27E-04 0.0554 
235S CoV 21.6 0.1 17.9 23.0 23.1 47.4 15.1 
HW4 Mean 3020 100304 646 17657.3 1471 8.49E-04 0.4766 
HW4 Std 1126 115 245 5431.2 457 3.31E-04 0.0576 
HW4 CoV 37.3 0.1 37.9 30.8 31.1 39.0 12.1 
I80S Mean 20194 69457 5261 15988.6 17487 6.40E-04 0.3745 
I80S Std 16039 42731 3303 7438.2 17445 2.14E-04 0.1016 
I80S CoV 79.4 61.5 62.8 46.5 99.8 33.5 27.1 

Jewell Mean 18192 100152 4662 18086.6 10779 9.63E-04 0.3624 
Jewell Std 12985 50 2810 1978.9 8498 5.80E-04 0.0670 
Jewell CoV 71.4 0.0 60.3 10.9 78.8 60.3 18.5 

 

It can be concluded from Tables 5-1 through 5-5 that for the parameters tested (cycles to 

failure, flow number, cycles at 30,000 microstrain, and parameter “A”) have very high 

variability. Parameter “m” has lower variability as compared to the other parameters. Tables 5-

6 through 5-9 present the ratio of dividing the different parameters at each condition by those 

of the control samples. It should be noted that the strain at flow number and parameter “A” are 

expected to increase with moisture conditioning so the ratios are expected to be greater than 

one. 
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Table 5-6 Ratio of Flow Number Test Parameters for Water Conditioned Samples 

Tested Under Water to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 0.17 0.31 1.82 0.14 3.29 0.97
218 0.99 1.21 1.64 0.86 3.52 0.79
235I 1.13 1.35 1.50 0.91 4.02 0.73
235S 0.83 0.89 1.49 0.68 4.65 0.76
330B 0.69 0.92 1.69 0.57 2.57 0.91
330I 1.62 1.45 1.13 1.70 4.55 0.63
330S 0.14 0.06 1.32 0.09 6.03 0.93
Alt 0.85 0.47 1.11 0.78 5.42 0.70
Ded 0.47 0.37 0.73 0.36 3.92 0.83
F52 0.67 0.72 1.40 0.61 3.45 0.80

HW4 0.09 0.10 1.88 0.05 3.52 0.95
I80B 2.41 3.23 1.82 2.17 6.97 0.60
I80S 0.40 0.16 1.63 0.25 2.06 1.01

Jewell 1.33 1.06 0.94 1.36 2.52 0.75
NW 1.51 1.62 1.58 1.27 4.82 0.68
Rose 0.27 0.41 2.48 0.18 6.18 0.90
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Table 5-7 Ratio of Flow Number Test Parameters for Freezer Conditioned Samples 

Tested in Air to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 0.69 1.25 1.57 0.62 2.43 0.92
218 0.91 0.93 0.97 0.95 1.32 0.95
235I 1.48 1.64 1.15 1.41 1.64 0.87
235S 0.85 1.12 1.11 0.91 1.96 0.91
330B 0.80 0.92 1.29 0.74 1.53 0.97
330I 1.50 1.52 0.99 1.57 1.39 0.87
330S 0.58 0.27 1.03 0.45 3.63 0.97
Alt 0.79 0.64 1.20 0.79 2.60 0.87
Ded 1.05 0.83 0.65 0.91 2.28 0.79
F52 0.80 0.75 0.94 0.81 1.29 0.97

HW4 0.49 0.52 1.46 0.40 2.06 0.89
I80B 2.26 2.17 0.99 2.40 1.71 0.84
I80S 0.51 0.44 1.45 0.36 0.56 1.29

Jewell 0.81 0.75 0.67 0.94 1.01 1.00
NW 1.56 1.69 1.16 1.54 1.55 0.86
Rose 0.57 0.77 2.36 0.37 3.28 0.99
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Table 5-8 Ratio of Flow Number Test Parameters for Freezer Conditioned Samples 

Tested Under Water to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 0.51 0.62 1.30 0.50 2.96 0.82
218 1.19 1.37 1.29 1.16 2.05 0.85
235I 2.12 1.37 0.75 2.24 1.89 0.85
235S 1.07 0.94 0.95 1.11 3.22 0.74
330B 2.58 3.19 1.55 2.19 1.98 0.81
330I 3.19 4.56 1.36 3.35 2.47 0.70
330S 0.83 0.28 0.90 0.88 7.41 0.63
Alt 1.16 2.72 1.30 1.06 2.48 0.84
Ded 1.70 1.19 0.58 1.52 1.93 0.78
F52 1.26 1.43 1.33 1.17 2.59 0.80

HW4 0.67 1.11 1.74 0.55 2.48 0.82
I80B 3.89 3.29 1.02 4.21 3.71 0.60
I80S 0.79 0.82 1.28 0.70 1.29 1.00

Jewell 1.92 1.64 0.86 2.34 2.65 0.68
NW 2.09 2.82 1.78 1.68 3.43 0.73
Rose 0.76 1.27 2.08 0.60 5.28 0.79

Table 5-9 Ratio of Flow Number Test Parameters for Unconditioned Samples Tested 

Under Water to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrains 
A m 

235I 1.22 1.07 1.03 1.17 1.98 0.84
235S 0.73 0.58 1.23 0.58 4.36 0.78
HW4 0.36 0.33 1.41 0.24 3.16 0.77
I80S 0.66 0.48 1.63 0.61 1.53 0.96
Jewell 3.32 3.08 1.10 3.44 2.87 0.68

 

The mixes were then ranked to study based on the ratios for each of the parameters studied. 

Ranks of the water conditioned mixes tested under water are presented in Table 5-10.  Ranks 
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for freezer conditioned mixes tested in air are presented in Table 5-11. Ranks for freezer 

conditioned samples tested under water are presented in Table 5-12.  
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Table 5-10 Ranking of Mixes Performance Based on the Ratio of Flow Number Test 

Parameters for Water Conditioned Samples Tested Under Water to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 14 13 14 14 4 2
218 6 5 11 6 6 9
235I 5 4 8 5 9 12
235S 8 8 7 8 11 10
330B 9 7 12 10 3 5
330I 2 3 4 2 10 15
330S 15 16 5 15 14 4
Alt 7 10 3 7 13 13
Ded 11 12 1 11 8 7
F52 10 9 6 9 5 8

HW4 16 15 15 16 7 3
I80B 1 1 13 1 16 16
I80S 12 14 10 12 1 1

Jewell 4 6 2 3 2 11
NW 3 2 9 4 12 14
Rose 13 11 16 13 15 6
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Table 5-11 Ranking of Mixes Performance Based on the Ratio of Flow Number Test 

Parameters for Freezer Conditioned Samples Tested in Air to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 12 5 15 12 13 8
218 6 7 4 5 4 7
235I 4 3 9 4 8 12
235S 7 6 8 7 10 9
330B 9 8 12 11 6 5
330I 3 4 5 2 5 11
330S 13 16 7 13 16 6
Alt 11 13 11 10 14 13
Ded 5 9 1 8 12 16
F52 10 12 3 9 3 4

HW4 16 14 14 14 11 10
I80B 1 1 6 1 9 15
I80S 15 15 13 16 1 1

Jewell 8 11 2 6 2 2
NW 2 2 10 3 7 14
Rose 14 10 16 15 15 3
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Table 5-12 Ranking of Mixes Performance Based on the Ratio of Flow Number Test 

Parameters for Freezer Conditioned Samples Tested Under Water to Control Samples 

Mix Cycles to Failure Flow 
Number 

Strain at Flow 
Number 

Cycles at 
30,000 

microstrain 
A m 

6N 16 15 10 16 11 6
218 9 9 8 9 5 3
235I 4 8 2 4 2 2
235S 11 13 5 10 12 11
330B 3 3 13 5 4 7
330I 2 1 12 2 6 13
330S 12 16 4 12 16 15
Alt 10 5 9 11 7 4
Ded 7 11 1 7 3 10
F52 8 7 11 8 9 8

HW4 15 12 14 15 8 5
I80B 1 2 6 1 14 16
I80S 13 14 7 13 1 1

Jewell 6 6 3 3 10 14
NW 5 4 15 6 13 12
Rose 14 10 16 14 15 9

 

5.2 Statistical analysis 

The parameters studied in the flow number test showed very high variability represented in the 

coefficient of variation. The parameter that showed the least variability in most of the cases is 

the parameter “m”. Cycles to failure will not be included in the statistical analysis because it is 

based on two different failure conditions caused by the machine limit and this introduced extra 

variability to this parameter.  The flow number ratios are scattered around one, which provides 

inconclusive results.  The variability in the flow number ratios is shown in Figure 5-1 for one 

of the conditions, which is the freezer conditioned samples tested in air. This variability is 

similar to what was found by Solimanian et al. (2007). Strain at flow number followed a 

similar trend as shown in Figure 5-2. Both parameters “A” and “m” offer promising results, but 
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only parameter “m” will be considered because it depends mainly on the material properties 

and the ratios achieved using this parameter are very consistent in being less than one except 

for one reading that was 1.29. 

 

Figure 5-1 Variability of FN ratios for Freezer Conditioned Samples Tested in Air 
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Figure 5-2 Variability of Strain at Flow Number ratios for Freezer Conditioned 

Samples Tested in Air  
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CHAPTER 6 AASHTO T283 TEST RESULTS 

Performing the AASHTO T283 test is important to compare the results achieved using the 

other methods to those achieved using the AASHTO T283 test. The main reason behind the 

comparison is that AASHTO T283 is what practitioners are used to performing and thus 

provides a good reference to the test that is currently being performed in practice. The test 

followed the methodology described in Chapter 3. Two groups of samples were tested: a 

control group and a moisture conditioned group, which was subjected to one freeze/thaw cycle. 

Five samples were tested in each group. Table 6-1 presents the tensile strength for both groups 

for the mixes tested. The individual sample results are presented in Appendix C. The results 

were then use to calculate the tensile strength ratio (TSR), which is presented in Table 6-2. The 

TSR was used to rank the mixes, where 1 represents the least moisture susceptible mix. The 

ranking of the mixes is presented in Table 6-2. The next step was to perform a statistical 

analysis on the results. A statistical analysis software (JMP) was used in the analysis. The first 

hypothesis that was tested was that the mean of the two tested groups for all the mixes was 

equal. This hypothesis was tested by a pair wise comparison t-test. This resulted in a p-value 

less than 0.0001, which means that the hypothesis is rejected at a level of significance α=0.05 

and that the two groups are statistically different. The second hypothesis that was tested was 

that the mean of the two groups for each mix is equal for the five samples tested for this mix. 

The results of this analysis are presented in Table 6-2. The results are presented as a p-value 

and whether the two means are statistically different or not. It can be seen from the results of 

this analysis that the means of the good performing mixes are not statistically different (p-value 

less than 0.05). It appears that the transition between the statistically similar and the statistically 

different groups occurs somewhere between TSR values of 0.93 and 0.86. 
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Table 6-1 Tensile Strength for Both Groups 

Mix Sample Tensile strength, control 
(kPa)

Tensile Strength, moisture 
(kPa)

6N Mean 994.8 854.9 
6N Stdev 25.6 69.7 
6N COV 2.6 8.2 
218 Mean 1206.3 859.2 
218 Stdev 69.3 80.2 
218 COV 5.7 9.3 
235I Mean 1204.3 1170.5 
235I Stdev 31.8 36.5 
235I COV 2.6 3.1 
235S Mean 1174.7 1206.8 
235S Stdev 45.8 73.4 
235S COV 3.9 6.1 
330B Mean 1014.5 777.8 
330B Stdev 67.7 34.4 
330B COV 6.7 4.4 
330I Mean 1202.9 1145.7 
330I Stdev 56.1 22.2 
330I COV 4.7 1.9 
330S Mean 1266.6 1248.8 
330S Stdev 13.9 7.3 
330S COV 1.1 0.6 
ALT Mean 1343.3 1339.6 
ALT Stdev 5.3 5.2 
ALT COV 0.4 0.4 
DED Mean 1171.8 873.0 
DED Stdev 50.1 30.3 
DED COV 4.3 3.5 
F52 Mean 839.3 781.4 
F52 Stdev 111.6 57.5 
F52 COV 13.3 7.4 

HW4 Mean 1135.9 910.3 
HW4 Stdev 164.5 180.8 
HW4 COV 14.5 19.9 
I80B Mean 1290.9 1247.4 
I80B Stdev 10.3 18.5 
I80B COV 0.8 1.5 
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Table 6-1 (continued) 

Mix Sample Tensile strength, control 
(kPa)

Tensile Strength, moisture 
(kPa)

I80S Mean 1243.0 981.1 
I80S Stdev 13.3 42.5 
I80S COV 1.1 4.3 

Jewell Mean 1177.5 1107.0 
Jewell Stdev 24.0 93.1 
Jewell COV 2.0 8.4 
NW Mean 914.3 789.3 
NW Stdev 19.1 79.5 
NW COV 2.1 10.1 
Rose Mean 1220.8 1221.6 
Rose Stdev 30.8 15.1 
Rose COV 2.5 1.2 

Table 6-2 TSR and Mixture Ranking 

Mix 
Tensile Strength Ratio 

(TSR) 
p-value Statistical Variation 

Rank 
6N 0.86 0.0109 Statistically different 11 
218 0.71 0.0042 Statistically different 16 
235I 0.97 0.2596 Statistically the same 5 
235S 1.03 0.4716 Statistically the same 1 
330B 0.77 0.0006 Statistically different 14 
330I 0.95 0.1198 Statistically the same 7 
330S 0.99 0.0563 Statistically the same 4 
ALT 1.00 0.3577 Statistically the same 3 
DED 0.75 <0.0001 Statistically different 15 
F52 0.93 0.4566 Statistically the same 9 

HW4 0.80 0.0385 Statistically different 12 
I80B 0.97 0.0220 Statistically the same 6 
I80S 0.79 0.0004 Statistically different 13 

Jewell 0.94 0.2292 Statistically the same 8 
NW 0.86 0.0376 Statistically different 10 
Rose 1.00 0.9672 Statistically the same 2 
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CHAPTER 7 COMPARISON BETWEEN THE DIFFERENT TEST 

METHODS 

In order to investigate the difference in results between the three tests investigated, a 

comparison was conducted between the results achieved using the different tests. The results 

from the three tests were compared together. The comparisons were done between samples 

with the same conditions. This means that only samples tested under condition 4 (moisture 

conditioned with one freeze/thaw cycle) and condition 1 (control) are included in this 

comparison.  Based on the discussion presented earlier about the dependence of the E* ratio on 

temperature and frequency, a situation corresponding to that of the flow number was 

considered. The master curves were used to calculate the dynamic modulus at 37οC and a 

loading frequency of 10Hz. These dynamic modulus values were then used to calculate the 

ratios used in the statistical analysis. The average of the E* ratios of all the tested temperature-

frequency combinations was also used in the comparison. A statistical analysis software (JMP) 

was used to run a pairwise comparison to show statistically different groups. The comparison 

was done for the ratio between the conditioned and unconditioned group results. The results of 

the different tests are presented in Table 7-1.  A paired t-test comparison was performed on 

these results.  The results of the comparison are presented in Table 7-2.  The results showed 

that there is no statistical difference between the parameter “m” and the TSR ratio and the 

average E* ratio.  All the other comparisons are statistically different.  Figures 7-1 through 7-6 

show a graphical representation for the tested pairs. The ranking of the mixes based on the 

different methods is presented in Table 7-3. 
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Table 7-1 Ratios from Different Tests 

Mix TSR ratio E* ratio (average) E* ratio (37οC-10Hz) Parameter “m” ratio
6N 0.86 0.92 1.10 0.92
218 0.71 1.08 1.19 0.95
235I 0.97 0.87 0.91 0.87
235s 1.03 1.17 1.27 0.91
330B 0.77 1.03 1.28 0.97
330I 0.95 1.09 1.31 0.87
330s 0.99 0.90 0.78 0.97
ALT 1.00 1.03 1.26 0.87
Ded 0.75 1.00 1.21 0.79
F52 0.93 1.01 1.10 0.97

HW4 0.80 0.80 0.59 0.89
I80B 0.97 1.01 1.04 0.84
I80s 0.79 0.90 0.92 1.29

Jewell 0.94 1.11 1.37 1.00
NW 0.86 0.99 1.25 0.86
Rose 1.00 0.83 0.78 0.99

    

Table 7-2 Statistical Comparison Between the Different Methods* 

E* ratio (average) E* ratio (37οC-10Hz) Parameter “m” ratio 
TSR ratio 0.0235 0.0090 0.3460 

E* ratio (average) 0.0125 0.2612 

E* ratio (37οC-10Hz) 0.0453 
* Values in bold are statistically significant at α=0.05 
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Figure 7-1 Comparison between Average E* Ratio and TSR 

 
 

 

Figure 7-2 Comparison between E* (37οC-10Hz) Ratio and TSR 
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Figure 7-3 Comparison between E* (37οC-10Hz) and Average E* Ratios 

 

 

Figure 7-4 Comparison between Parameter “m” Ratio and TSR 
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Figure 7-5 Comparison between Average E* and Parameter “m” Ratios 

 

 

Figure 7-6 Comparison between E* (37οC-10Hz) and Parameter “m” Ratios 
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Table 7-3 Ranking of the Mixes Using the Different Methods 

Mix TSR ratio E* ratio (average) E* ratio (37οC-10Hz) Parameter “m” ratio 

6N 10 11 10 8 
218 16 4 8 7 
235I 5 14 13 13 
235s 1 1 4 9 
330B 14 6 3 4 
330I 7 3 2 11 
330s 4 12 14 6 
ALT 2 5 5 12 
Ded 15 9 7 16 
F52 9 8 9 5 

HW4 12 16 16 10 
I80B 6 7 11 15 
I80s 13 13 12 1 

Jewell 8 2 1 2 
NW 11 10 6 14 
Rose 3 15 15 3 
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CHAPTER 8 FINITE ELEMENT MODEL 

8.1 Introduction 

Finite element analysis was performed using a multi-purpose finite element software, 

ABAQUS™ version 6.9.1 (2009). The reason for choosing this software is that it includes a 

module for viscoelastic materials and that it has pre- and post-processors that can be used in the 

stochastic part of the analysis. Two different models with two different geometries were used 

in this study. The first model is the validation model and has a cylindrical geometry having the 

same dimensions as the flow number sample. This model was used to validate and calibrate the 

data transformation that was done to transform the dynamic complex modulus results to the 

shear complex modulus results.  The reason for the selection of this validation method is that 

the same samples were used in the dynamic modulus and the flow number tests, so if the flow 

number test can be simulated and the results are comparable then this demonstrates that the 

transformation is correct and can be used to in the main model. The second model is the 

stochastic finite element analysis model. The stochastic finite element analysis was conducted 

using a non-intrusive technique. In this technique, the test results were analyzed to develop a 

variable set of data for each material based on the experimental results. The developed data sets 

were used as inputs for the model that was subdivided into sections that varied in material 

properties in which the details and results of this model is discussed in detail in this chapter.   

8.2 Statistical approach 

The purpose of the stochastic finite element analysis is to model the variability of the results 

based on variability of the input. In the case of this study, the variability consisted of three 

types: material variability, construction variability and loading/testing variability. To be able to 

incorporate these three types of variability in the input data, results from different samples and 

loading cycles were used. This was achieved by using the dynamic modulus results of five 
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samples for each of the control and moisture conditioned groups, which represents the material 

and construction variability. The loading/testing variability was incorporated by taking the 

results from two different cycles. This resulted in 10 different sets of data for each group. A 

random number generator that generates numbers between one and ten was used to pick two 

data sets from each sample to be used in the model.  The random number generation concept 

was used to avoid developing data sets because the mixture behavior depends on the relation 

between the numbers within the set, which cannot be maintained in randomly generated data. 

8.3 Material characterization  

ABAQUS has a viscoelastic module that can be used in modeling asphalt concrete.  There are 

several alternatives that can be used for defining the material properties.  The one used in this 

analysis was to use the complex shear modulus, which can be obtained by converting the 

dynamic modulus test results.  The conversion was done using an approximation technique 

developed by Schapery and Park (1999), details about the transportation technique will be 

presented later in this section. Temperature dependency of the material needs to be entered in 

the model. Temperature dependency is calculated using the WLF equation presented in section 

2.7, the inputs are the constants c1 and c2. Finally the elastic properties of the materials were 

assumed.  The modulus of elasticity was assumed to be 500MPa, the selection of this value was 

based on the high temperature used in modeling (37°C) and a sensitivity analysis was done on 

the value of the modulus of elasticity and showed that the results are not affected by the 

modulus value. The Poison’s ratio was assumed to be 0.35. 

The approximation method proposed by Schapery and Park (1999) for interconversion between 

the linear viscoelastic material properties was used.  In the case of dynamic modulus 

conversion to shear modulus, the following steps apply (Schapery and Park 1999): 

The dynamic modulus is converted into the storage modulus: 
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ᇱܧ ൌ  φ (8-1)ݏ݋ܿכܧ

Where: 

E’ is the storage modulus, 

E* is the dynamic modulus, and 

φ is the phase angle. 

The next step is to calculate the adjustment factor that is used to transform the storage modulus 

into relaxation modulus 

ᇱߣ ൌ Γሺ1 െ ݊ሻcos ሺ௡గ
ଶ

ሻ (8-2) 

Where: 

 ,ᇱ is the adjustment factorߣ

Γ( ) is  the gamma function, and 

 n is the local log-log slope of the source function (in this case the storage modulus. 

the relaxation modulus is calculated as follows: 

ሻݐሺܧ ൌ  ᇱ (8-3)ߣ/ᇱሺ߸ሻܧ

Where: 

E(t)  is the relaxation modulus at time t, 

 ,߸ ᇱሺ߸ሻ is the storage modulus at frequencyܧ

 ᇱ is the adjustment factor, andߣ

            t = 1/߸. 

A sigmoidal function can be fitted to the relaxation modulus to get the relaxation modulus at a 

reference temperature.  The sigmoidal function presented in section 2.7 was used. 

The shear modulus is then calculated from the relaxation modulus using the relationship: 

ሻݐሺܩ ൌ ாሺ௧ሻ
ଶሺଵାజሻ

 (8-4) 

G(t)  is the shear modulus at time t, 
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E(t)  is the relaxation modulus at time t, and 

            ߭ is Poison’s ratio. 

ABAQUS has a built in function that transforms the shear modulus into a Prony series.  The 

data is entered as the long term modulus and then the ratio of the modulus at specific times to 

the long term modulus.  The reference temperature that was used in the sigmoidal function 

fitting was selected to be 21°C.  The simulation temperature was 37°C.  All the data was 

shifted to 37°C before entering them into the model using the shift factors calculated from the 

WLF equation. 

 

8.4 Validation model  

8.4.1 Model geometry and meshing 

The validation model has a cylindrical geometry having the same dimensions as the flow 

number sample. This model was used to test the validity of the data conversion by simulating 

the flow number test and comparing the results. This model is presented in Figure 8-1. The 

mesh used for this model was a structured a 20-node quadratic brick, with reduced integration 

(C3D20R).   
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a. Loads and Boundary Conditions 

 
b. The Meshed Part 

Figure 8-1 Finite Element Validation Model 

8.4.2 Loads and boundary conditions 

To resemble the laboratory test, the model was restrained at the bottom from movement and 

rotation in all directions.  The load applied to the model was the same as the load applied in the 

lab.  The load was defined as a 0.1 sec loading cycle at 630kPa followed by arrest period of 0.9 

sec.  During the rest period, the load was not completely removed, a load of 30kPa was 

maintained. The simulation represented a low volume traffic level of 0.5 million ESALs, so the 

load was applied 0.5 million times on each wheel location. 

8.4.3 Model results 

The results of the validation model are presented in Figures 8-2 through 8-17.  The results 

shown in the figures are a comparison between the flow number results and the modeling 
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results.  The model results needed to be multiplied by scaling factors to obtain strain values 

close to the actual strain, these scaling factors were carried over to the full model to be used in 

scaling the deformations. Since the model used is a viscoelastic model, it does not simulate the 

plastic deformation portion of the material.  This is why the model was calibrated up to 1 

percent strain, which ensures that the material is still in the linear viscoelastic region of its 

behavior (before the flow number). The results show that the model was capable of capturing 

the trend followed by the material.  

 

Figure 8-2 Validation Model Results for Mix 6N 
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Figure 8-3 Validation Model Results for Mix 218 

 

Figure 8-4 Validation Model Results for Mix 235I 
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Figure 8-5 Validation Model Results for Mix 235S 

 

Figure 8-6 Validation Model Results for Mix 330B 
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Figure 8-7 Validation Model Results for Mix 330I 

 

Figure 8-8 Validation Model Results for Mix 330S 
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Figure 8-9 Validation Model Results for Mix ALT 

 

Figure 8-10 Validation Model Results for Mix DED 
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Figure 8-11Validation Model Results for Mix F52 

 

Figure 8-12 Validation Model Results for Mix HW4 
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Figure 8-13 Validation Model Results for Mix I80B 

 

Figure 8-14 Validation Model Results for Mix I80S 
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Figure 8-15 Validation Model Results for Mix NW 

 

Figure 8-16 Validation Model Results for Mix Rose 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600

St
ra

in
 (%

)

Time (s)

Tested
FE-Output

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 5000 10000 15000 20000

St
ra

in
 (%

)

Time (s)

Tested
FE-Output



www.manaraa.com

117 

 

 

 

 

Figure 8-17 Validation Model Results for Mix Jewell 

8.5 The stochastic model 

8.5.1 Model geometry and meshing 

The stochastic finite element model represents a three dimensional (3D) pavement structure 

that consists of a 15cm (6in) thick asphalt pavement on top of a 30cm (12in) granular base with 

an assumed modulus of 30MPa (4.35ksi) on top of a subgrade with a modulus of 10MPa 

(1.45ksi).  The bedrock was assumed to be at a depth of 2m from the surface of the subgrade. 

The model was subdivided along the traffic direction (Y-direction) into 12 sections.  The first 

and last sections were 3 meters (10ft) in length and were not included in the analysis, the only 

function of these two segments was to eliminate the edge effects. The remaining 10 sections 

were 1 meter in length and each one was assigned material properties based on the variability 

of the material. Figure 8-18 presents the data input used in modeling unconditioned mix 6N as 

a sample for the input data. On the transverse direction (X-direction), the pavement was 
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assumed to be 3.6 meters (12ft) wide, which is the normal width of a traffic lane.  The lane 

marking was assumed to be 50cm (20in) feet from the edge of the pavement and the traffic was 

assumed to be 30cm (1ft) from the lane marking.  This model is presented in Figure 8-19. The 

mesh used for this model was a structured a 20-node quadratic brick, with reduced integration 

(C3D20R).  The global mesh size used for the asphalt pavement layer was 0.1m. A wider mesh 

was used for the base and subgrade (0.6m). the meshed model is presented in Figure 8-20.  

 

Figure 8-18 Input Data for Mix 6N (Unconditioned) 
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Figure 8-19 The Stochastic Model with Loads and Boundary Conditions 

 

Figure 8-20 The Meshed Stochastic Model 

8.5.2 Loads and boundary conditions 

As mentioned earlier, the load was applied 0.8m from the right edge of the pavement and the 

traffic was assumed to move in the positive Y-direction.  The load was simulated using a wheel 

with a contact dimension of 0.2m in width and 0.33m in length.  The applied load was assumed 

to be one equivalent single axle load (ESAL).  The applied load was 620kPa per wheel, which 
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is equivalent to the ESAL load.  Blocks that simulate the wheels were placed in two parallel 

lines. To simulate the movement of the load, the load was shifted from one block to the 

adjacent one every 0.15s, which corresponds to a traffic speed of 80km/hr (50mph). The load 

was repeated every 1s.  

8.5.3 Model results 

The results of the finite element model are presented in this section.  The deformation along the 

transverse direction (X-axis) is presented for all the mixes.  The results for the different 

sections of the mix are presented on the same chart to show the variability.  The results in 

general followed the expected trend and deformation pattern in which the deformation is 

highest under the wheel paths.  Figures 8-21 through 8-36 show the deformation in the 

transverse direction for the unconditioned mixes and Figures 8-37 through 8-53 are for the 

conditioned mixes. 

 

Figure 8-21 Transverse Deformation Profile for Mix 6N (Unconditioned) 
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Figure 8-22 Transverse Deformation Profile for Mix 218 (Unconditioned) 

 

Figure 8-23 Transverse Deformation Profile for Mix 235I (Unconditioned) 
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Figure 8-24 Transverse Deformation Profile for Mix 235S (Unconditioned) 

 

Figure 8-25 Transverse Deformation Profile for Mix 330B (Unconditioned) 
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Figure 8-26 Transverse Deformation Profile for Mix 330I (Unconditioned) 

 

Figure 8-27 Transverse Deformation Profile for Mix 330S (Unconditioned) 
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Figure 8-28 Transverse Deformation Profile for Mix ALT (Unconditioned) 

 

Figure 8-29 Transverse Deformation Profile for Mix DED (Unconditioned) 
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Figure 8-30 Transverse Deformation Profile for Mix F52 (Unconditioned) 

 

Figure 8-31 Transverse Deformation Profile for Mix HW4 (Unconditioned) 
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Figure 8-32 Transverse Deformation Profile for Mix I80B (Unconditioned) 

 

Figure 8-33 Transverse Deformation Profile for Mix I80S (Unconditioned) 
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Figure 8-34 Transverse Deformation Profile for Mix NW (Unconditioned) 

 

Figure 8-35 Transverse Deformation Profile for Mix Rose (Unconditioned) 
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Figure 8-36 Transverse Deformation Profile for Mix Jewell (Unconditioned) 

 

Figure 8-37 Transverse Deformation Profile for Mix 6N (Moisture-Conditioned) 
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Figure 8-38 Transverse Deformation Profile for Mix 218 (Moisture-Conditioned) 

 

Figure 8-39 Transverse Deformation Profile for Mix 235I (Moisture-Conditioned) 
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Figure 8-40 Transverse Deformation Profile for Mix 235S (Moisture-Conditioned) 

 

Figure 8-41 Transverse Deformation Profile for Mix 330B (Moisture-Conditioned) 
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Figure 8-42 Transverse Deformation Profile for Mix 330I (Moisture-Conditioned) 

 

Figure 8-43 Transverse Deformation Profile for Mix 330S (Moisture-Conditioned) 
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Figure 8-44 Transverse Deformation Profile for Mix ALT (Moisture-Conditioned) 

 

 

Figure 8-45 Transverse Deformation Profile for Mix DED (Moisture-Conditioned) 
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Figure 8-46 Transverse Deformation Profile for Mix F52 (Moisture-Conditioned) 

 

Figure 8-47 Transverse Deformation Profile for Mix HW4 (Moisture-Conditioned) 
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Figure 8-48 Transverse Deformation Profile for Mix I80B (Moisture-Conditioned) 

 

Figure 8-49 Transverse Deformation Profile for Mix I80S (Moisture-Conditioned) 
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Figure 8-50 Transverse Deformation Profile for Mix NW (Moisture-Conditioned) 

 

Figure 8-51 Transverse Deformation Profile for Mix Rose (Moisture-Conditioned) 
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Figure 8-52 Transverse Deformation Profile for Mix Jewell (Moisture-Conditioned) 

Figures 8-53 through 8-68 show the deformation along the wheel path for all the mixes.  Each 
chart shows the deformations for both the moisture conditioned and the unconditioned samples.  
Each 1 meter in the chart represents one of the sections simulated so the variability in the 
response between each section and the other is caused by the material variability. It can be seen 
from the charts that the material variability can cause some instances of the moisture 
conditioned section to behave better than some of the unconditioned sections. Figure 8-53 
includes also the results when the average material data was used as input. 
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Figure 8-53 Longitudinal Deformation Profile for Mix 6N 

 

Figure 8-54 Longitudinal Deformation Profile for Mix 218 
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Figure 8-55 Longitudinal Deformation Profile for Mix 235I 

 

Figure 8-56 Longitudinal Deformation Profile for Mix 235S 
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Figure 8-57 Longitudinal Deformation Profile for Mix 330B 

 

Figure 8-58 Longitudinal Deformation Profile for Mix 330I 
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Figure 8-59 Longitudinal Deformation Profile for Mix 330S 

 

Figure 8-60 Longitudinal Deformation Profile for Mix ALT 
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Figure 8-61 Longitudinal Deformation Profile for Mix DED 

 

Figure 8-62 Longitudinal Deformation Profile for Mix F52 
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Figure 8-63 Longitudinal Deformation Profile for Mix HW4 

 

Figure 8-64  Longitudinal Deformation Profile for Mix I80B 
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Figure 8-65 Longitudinal Deformation Profile for Mix I80S 

 

Figure 8-66 Longitudinal Deformation Profile for Mix NW 
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Figure 8-67  Longitudinal Deformation Profile for Mix Rose 

 

Figure 8-68  Longitudinal Deformation Profile for Mix Jewell 
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8.6 Analysis of finite element results 

The deformation under the wheel path at the middle of each section was recorded and 

summarized in Tables 8-1 and 8-2 for the unconditioned and conditioned samples, respectively. 

Table 8-3 presents statistical summary of the results.  It can be concluded from the results that 

the variability increased with sample conditioning for 10 out of the 16 mixes simulated. It can 

only be concluded that moisture conditioning of the samples increased the predicted 

deformation of the mixtures and this means that the mixes are more susceptible to rutting. 
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Table 8-1 Deformation Summary for Unconditioned Mixes 

Mix Section Deformation (mm) 
1 2 3 4 5 6 7 8 9 10 

6n -1.20 -1.14 -1.08 -1.09 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 
218 -1.11 -1.11 -1.22 -1.35 -1.25 -1.24 -1.07 -1.28 -2.74 -2.07 
235I -2.13 -1.06 -1.24 -1.22 -1.20 -1.19 -1.16 -1.49 -1.09 -1.09 
235S -2.13 -1.06 -1.24 -1.22 -1.20 -1.19 -1.16 -1.49 -1.09 -1.09 
330B -1.16 -1.19 -1.14 -1.53 -1.19 -1.86 -1.16 -1.14 -1.16 -1.54 
330I -1.15 -1.20 -1.16 -1.44 -1.16 -1.20 -1.07 -1.24 -1.12 -2.43 
330S -1.09 -1.06 -1.09 -1.23 -2.25 -3.79 -1.16 -1.10 -1.16 -1.16 
ALT -2.54 -1.10 -1.17 -1.17 -2.35 -2.31 -3.61 -3.59 -3.60 -3.62 
DED -1.25 -1.23 -1.28 -1.34 -1.24 -1.20 -1.28 -1.30 -1.27 -1.40 
F52 -1.16 -1.21 -1.30 -1.35 -1.16 -1.24 -1.16 -1.11 -1.24 -1.16 

HW4 -6.58 -1.34 -1.46 -1.87 -2.14 -3.69 -3.76 -3.47 -3.71 -2.92 
I80B -3.28 -3.24 -3.66 -4.30 -3.22 -3.55 -3.50 -3.94 -3.86 -4.04 
I80S -2.69 -1.98 -2.27 -1.87 -2.82 -2.72 -3.28 -3.17 -2.79 -1.99 
NW -3.14 -1.60 -2.28 -2.35 -2.45 -2.79 -3.42 -3.06 -2.62 -2.89 
Rose -2.91 -3.17 -2.72 -2.73 -2.35 -1.56 -1.62 -1.62 -1.47 -1.30 

Jewell -2.83 -2.85 -3.49 -3.49 -3.04 -1.17 -1.17 -2.86 -3.51 -2.99 
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Table 8-2 Deformation Summary for Conditioned Mixes 

Mix Section Deformation (mm) 
1 2 3 4 5 6 7 8 9 10 

6n -3.49 -3.21 -7.16 -5.73 -1.81 -1.22 -1.90 -2.00 -3.71 -3.77
218 -4.77 -5.34 -2.43 -9.13 -5.20 -3.34 -3.30 -1.17 -3.30 -3.91
235I -3.37 -2.51 -1.81 -2.17 -1.34 -4.13 -3.65 -2.02 -3.55 -3.54
235S -2.04 -3.91 -1.42 -5.41 -4.45 -2.15 -2.94 -3.73 -2.45 -3.39
330B -3.13 -2.55 -3.89 -6.41 -4.10 -2.71 -4.22 -2.43 -4.02 -3.30
330I -3.97 -4.02 -4.27 -2.66 -3.74 -3.41 -3.41 -2.74 -4.02 -2.25
330S -2.45 -2.43 -7.00 -3.14 -1.12 -3.13 -3.08 -3.74 -3.27 -4.23
ALT -3.79 -3.61 -3.78 -4.11 -3.77 -2.63 -2.94 -4.41 -3.10 -3.82
DED -3.80 -3.76 -5.07 -8.07 -3.03 -3.35 -2.02 -4.94 -3.70 -5.05
F52 -5.24 -4.45 -3.86 -4.72 -3.91 -5.87 -4.88 -4.74 -4.85 -5.94

HW4 -3.83 -1.43 -3.76 -3.97 -3.77 -3.95 -6.03 -4.27 -3.67 -3.67
I80B -4.13 -2.96 -3.26 -4.05 -2.60 -3.44 -3.87 -2.04 -1.91 -3.58
I80S -3.47 -3.29 -2.06 -3.01 -3.96 -3.59 -4.55 -3.83 -3.77 -2.59
NW -3.60 -3.95 -3.95 -2.68 -3.98 -3.74 -3.27 -3.57 -4.37 -4.32
Rose -3.83 -2.19 -2.70 -1.62 -3.83 -3.31 -1.32 -3.99 -1.67 -3.31

Jewell -3.68 -3.76 -3.39 -4.27 -3.20 -3.92 -3.42 -3.17 -4.29 -4.62
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Table 8-3 Summary of the Finite Element Results 

Mix Condition Mean Deformation 
(mm) 

Standard Deviation 
(mm) CoV (%) Ratio, Conditioned/ 

Unconditioned Rank 

6n 
Unconditioned -1.07 0.06 5.61 

3.18 14 
Conditioned -3.40 1.87 54.90 

218 
Unconditioned -1.44 0.54 37.25 

2.90 13 
Conditioned -4.19 2.15 51.35 

235I 
Unconditioned -1.29 0.32 24.85 

2.18 8 
Conditioned -2.81 0.95 33.81 

235S 
Unconditioned -1.29 0.32 24.85 

2.48 10 
Conditioned -3.19 1.23 38.44 

330B 
Unconditioned -1.31 0.25 18.93 

2.81 12 
Conditioned -3.67 1.17 31.81 

330I 
Unconditioned -1.32 0.40 30.53 

2.62 11 
Conditioned -3.45 0.69 19.92 

330S 
Unconditioned -1.51 0.88 57.96 

2.22 9 
Conditioned -3.36 1.53 45.53 

ALT 
Unconditioned -2.51 1.08 43.02 

1.44 7 
Conditioned -3.60 0.55 15.21 

DED 
Unconditioned -1.28 0.06 4.42 

3.34 15 
Conditioned -4.28 1.65 38.49 

F52 
Unconditioned -1.21 0.07 6.04 

4.01 16 
Conditioned -4.85 0.70 14.48 

HW4 
Unconditioned -3.09 1.55 50.12 

1.24 2 
Conditioned -3.84 1.10 28.68 

I80B 
Unconditioned -3.66 0.37 10.07 

0.87 1 
Conditioned -3.18 0.79 24.91 

I80S 
Unconditioned -2.56 0.50 19.63 

1.33 4 
Conditioned -3.41 0.72 20.99 

NW 
Unconditioned -2.66 0.52 19.60 

1.41 6 
Conditioned -3.74 0.50 13.36 

Rose 
Unconditioned -2.15 0.70 32.66 

1.29 3 
Conditioned -2.78 1.02 36.62 

Jewell 
Unconditioned -2.74 0.87 31.84 

1.38 5 
Conditioned -3.77 0.50 13.19 
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS 

In this research, sixteen mixes were collected from across the state of Iowa. The mixes were 

selected to cover a wide variety of materials and traffic levels. For each mix, samples were 

compacted using a Superpave gyratory compactor and were divided into four groups with 

equal average air voids and different conditioning/testing schemes. Five of the mixes were 

subjected to a fifth conditioning/testing scheme. Dynamic modulus, flow number, and tensile 

strength ratio (AASHTO T283) tests were performed on the samples. The results were 

compared together statistically.  A finite element model was then developed using the results 

from the dynamic modulus test and was calibrated by the flow number test results.  A 

stochastic finite element model was then developed using the variability of the tested 

materials. 

This research studied the use of dynamic modulus and flow number tests in moisture 

susceptibility evaluation.  The tests were analyzed using different approaches.  Finite element 

analysis was used as an evaluation tool to evaluate the moisture susceptibility and variability 

of the mixes.  

9.1 Conclusions 

Based on the range of materials and the parameters tested in this research the following can 

be concluded: 

• The dynamic modulus test is sensitive to the effect of moisture on the mixture. The extent 

by which the dynamic modulus value is affected due to the moisture conditioning is 

affected by the temperature and the loading frequency. This means that the effect of 

moisture varies by the loading conditions. 
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• For the dynamic modulus test results, the effect of moisture appears more on higher 

temperatures and/or lower frequencies. 

• For best results, the dynamic modulus test results need to be combined either with 

information about the conditions at which the mix is going to be used or with a tool that 

helps visualize the effect of temperature over a range of temperatures and frequencies. 

• Plotting a master curve provides a good tool to visualize the effect of moisture on the 

mix. 

• All the parameters evaluated from the flow number test results gave mixed results except 

for the parameter “m”, which provides consistent results. 

• There is no evidence of a statistical difference between the ratios calculated using the 

average E* values and the indirect tensile test when compared to parameter “m”. 

• The different conditioning schemes used in conjunction with the flow number test 

showed no evidence of statistical difference. The effect of the different conditioning 

schemes of the mixes on the flow number results varied from one mix to the other and 

this makes them inconclusive.  This can be attributed to the variability of the flow 

number test results.  

• Linear viscoelastic modeling of asphalt material is capable of predicting the material 

performance.  This kind of modeling is only limited to the linear viscoelastic range and is 

not recommended after this range. 

• Finite element modeling is a good tool to identify the performance difference between the 

conditioned and unconditioned samples.  This makes modeling a good tool to identify the 

moisture susceptibility of a mix and also to quantify the amount of damage. 

• Moisture damage increased the mix susceptibility to rutting. 
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9.2 Limitations of the study 

This study has some limitations that are imposed by the testing conditions.  The results of the 

finite element analysis are limited to the linear viscoelastic range.  This limitation can be 

eliminated by further testing of the material to be able to model the plastic deformation range. 

Another limitation is the complexity of the finite element model usage and this can be 

eliminated by developing a software that acts as a pre- and post-processor to perform data 

preparation and make the application more user friendly.  Calibration to large number of field 

data is essential to make sure that the model is actually simulating what will happen in the field 

which would include varying pavement structures and loading conditions.  

9.3 Recommendations  

It is recommended based on the results of this research to do the following: 

• Try the various testing/conditioning using the dynamic modulus test using LVDTs 

that can be used under water or by relying on the actuator LVDT, which might reduce 

the accuracy of the results. 

• Run the dynamic modulus test only and skip the flow number test. This gives a 

chance to moisture condition the sample after running the control test then the sample 

can be tested again. This approach will reduce the variability introduced by testing 

two sets of samples. 

• The dynamic modulus results should be related to the operating conditions. 

• The use of parameter “m” calculated from the flow number test eliminates the need to 

test the sample to failure because to calculate this parameter, the sample does not 

need to reach the tertiary flow.  
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• Monitoring the field performance of the mixes and comparing it to the laboratory 

results is very important to judge the quality of the test results and to judge which test 

provides the most accurate results.  It would also be useful to develop a finite element 

model based on field data and comparing its results to field conditions. 

• Further testing is needed to be able to model the plastic material deformation. 

• If finite element analysis is to be used as an evaluation tool for moisture damage, pre 

and post processing software can be developed to facilitate data entry and perform the 

data transformation and then help in visualizing the results. 

• Variability can be also included in parameters that were considered constant in this 

study.  It can be added to the base layer and subgrade.  Variability can also be added 

to the thickness of the different layers. 
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APPENDIX B DYNAMIC MODULUS TEST RESULTS 

The results of the dynamic modulus test and phase angle for the control group are presented in 

Tables B-1 and B-2, respectively. The results for the conditioned group are presented in Tables 

B-3 and B-4 
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Table B-1 Dynamic Modulus Results for Control Mixes (GPa) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
6N Mean 4 12.47 12.26 10.66 10.97 10.43 9.07 8.33 7.78 6.55
6N Mean 21 5.70 5.20 4.79 4.17 3.59 2.76 2.45 2.22 1.67
6N Stdv 4 1.63 0.78 2.29 0.74 0.74 0.75 0.74 0.74 0.73
6N Stdv 21 0.66 0.60 0.60 0.56 0.54 0.47 0.43 0.40 0.33
6N CoV (%) 4 13.1 6.3 21.5 6.8 7.1 8.2 8.9 9.6 11.2
6N CoV (%) 21 11.5 11.6 12.5 13.4 15.1 17.1 17.4 18.1 19.9
218 Mean 4 14.02 13.31 12.78 12.01 10.96 9.96 9.20 8.68 7.36
218 Mean 21 6.37 5.75 5.34 4.63 3.59 2.95 2.64 2.40 1.73
218 Stdv 4 1.31 1.14 1.01 0.91 0.99 0.82 0.78 0.65 0.50
218 Stdv 21 0.34 0.29 0.28 0.25 0.21 0.18 0.17 0.15 0.12
218 CoV (%) 4 9.3 8.6 7.9 7.6 9.0 8.2 8.5 7.5 6.7
218 CoV (%) 21 5.3 5.0 5.2 5.3 6.0 6.2 6.5 6.4 6.9
235I Mean 4 14.13 13.35 12.62 11.67 11.04 9.37 8.50 7.86 6.43
235I Mean 21 5.90 5.34 4.89 4.18 3.44 2.62 2.25 2.00 1.46
235I Stdv 4 0.78 0.59 0.55 0.53 0.51 0.45 0.42 0.37 0.36
235I Stdv 21 0.33 0.29 0.27 0.24 0.21 0.17 0.14 0.13 0.09
235I CoV (%) 4 5.5 4.4 4.4 4.5 4.6 4.8 5.0 4.7 5.5
235I CoV (%) 21 5.6 5.4 5.6 5.7 6.1 6.5 6.2 6.7 6.4
235s Mean 4 13.83 13.02 12.30 11.40 10.32 9.22 8.49 7.92 6.62
235s Mean 21 6.13 5.50 5.09 4.40 3.38 2.81 2.45 2.21 1.64
235s Stdv 4 4.36 4.23 4.05 3.92 3.89 3.59 3.39 3.20 2.80
235s Stdv 21 2.13 1.95 1.84 1.63 1.34 1.12 1.00 0.92 0.67
235s CoV (%) 4 31.5 32.5 32.9 34.4 37.7 39.0 39.9 40.4 42.3
235s CoV (%) 21 34.8 35.5 36.2 37.1 39.7 39.9 40.8 41.4 40.7
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Table B-1 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
330B Mean 4 13.54 12.66 12.02 11.21 10.28 9.22 8.58 8.00 6.57
330B Mean 21 5.56 4.99 4.58 3.93 2.96 2.40 2.12 1.90 1.32
330B Stdv 4 1.02 0.85 0.78 0.74 0.75 0.66 0.61 0.58 0.49
330B Stdv 21 0.48 0.39 0.37 0.33 0.26 0.22 0.18 0.18 0.13
330B CoV (%) 4 7.6 6.7 6.5 6.6 7.2 7.1 7.1 7.2 7.4
330B CoV (%) 21 8.6 7.9 8.0 8.4 8.8 9.0 8.7 9.4 9.8
330I Mean 4 16.87 16.38 15.57 14.66 14.00 12.22 11.28 10.47 8.72
330I Mean 21 7.57 6.77 6.24 5.42 4.63 3.54 3.10 2.76 1.96
330I Stdv 4 0.93 0.47 0.39 0.37 0.35 0.34 0.32 0.27 0.26
330I Stdv 21 0.29 0.25 0.24 0.19 0.18 0.14 0.12 0.10 0.08
330I CoV (%) 4 5.5 2.9 2.5 2.5 2.5 2.8 2.8 2.6 2.9
330I CoV (%) 21 3.8 3.7 3.9 3.5 3.8 3.9 3.9 3.7 3.9
330s Mean 4 16.19 15.56 14.94 14.19 13.82 12.39 11.56 10.92 9.65
330s Mean 21 9.83 9.08 8.47 7.45 6.71 5.22 4.38 3.82 2.79
330s Stdv 4 1.17 1.16 1.11 1.12 1.11 1.10 1.05 0.98 1.04
330s Stdv 21 0.34 0.32 0.30 0.26 0.24 0.22 0.21 0.22 0.19
330I CoV (%) 4 7.2 7.4 7.4 7.9 8.0 8.9 9.1 9.0 10.8
330I CoV (%) 21 10.4 11.1 11.5 12.0 14.4 17.6 20.2 23.4 28.3
ALT Mean 4 20.66 19.64 19.35 18.32 17.61 15.69 14.62 13.79 11.96
ALT Mean 21 10.70 9.60 8.95 7.96 6.98 5.57 4.88 4.45 3.35
ALT Stdv 4 0.68 0.95 0.76 0.74 0.73 0.76 0.82 0.83 0.85
ALT Stdv 21 0.75 0.65 0.61 0.62 0.57 0.55 0.53 0.52 0.46
ALT CoV (%) 4 3.3 4.8 3.9 4.1 4.1 4.8 5.6 6.0 7.1
ALT CoV (%) 21 7.0 6.8 6.9 7.8 8.1 9.8 10.8 11.8 13.8
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Table B-1 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
Ded Mean 4 9.36 8.57 8.06 7.28 6.32 5.44 5.03 4.62 3.25
Ded Mean 21 3.31 2.92 2.64 2.19 1.58 1.28 1.09 0.96 0.68
Ded Stdv 4 0.62 0.51 0.53 0.51 0.43 0.40 0.35 0.35 0.79
Ded Stdv 21 0.26 0.23 0.21 0.18 0.14 0.11 0.09 0.08 0.05
Ded CoV (%) 4 6.6 6.0 6.5 7.0 6.8 7.3 7.0 7.5 24.3
Ded CoV (%) 21 7.8 7.9 7.8 8.2 8.6 8.8 8.3 8.3 7.9
F52 Mean 4 12.71 11.76 11.16 10.23 9.50 7.91 7.15 6.64 5.32
F52 Mean 21 5.02 4.50 4.14 3.51 2.77 2.08 1.82 1.60 1.16
F52 Stdv 4 0.64 0.54 0.42 0.38 0.37 0.31 0.29 0.27 0.26
F52 Stdv 21 0.24 0.19 0.19 0.19 0.18 0.13 0.12 0.13 0.11
F52 CoV (%) 4 5.1 4.6 3.7 3.7 3.8 3.9 4.1 4.1 4.9
F52 CoV (%) 21 4.8 4.3 4.7 5.3 6.4 6.4 6.9 7.9 9.4

HW4 Mean 4 12.85 11.90 11.30 10.43 9.83 8.33 7.70 7.13 5.88
HW4 Mean 21 7.26 6.48 5.85 4.81 4.08 2.74 2.08 1.68 1.07
HW4 Stdv 4 1.85 2.01 1.96 1.95 2.04 2.03 1.86 1.78 1.81
HW4 Stdv 21 0.80 0.74 0.70 0.62 0.38 0.26 0.20 0.22 0.14
HW4 CoV (%) 4 14.4 16.9 17.3 18.7 20.8 24.3 24.2 25.0 30.8
HW4 CoV (%) 21 44.5 47.4 50.7 53.8 49.0 58.3 44.7 51.2 41.8
I80B Mean 4 16.20 15.49 14.86 13.95 13.39 11.78 10.95 10.25 8.61
I80B Mean 21 7.98 7.22 6.67 5.82 5.07 3.89 3.38 3.01 2.13
I80B Stdv 4 0.35 0.42 0.40 0.31 0.41 0.40 0.39 0.35 0.32
I80B Stdv 21 0.32 0.24 0.23 0.22 0.21 0.19 0.16 0.13 0.09
I80B CoV (%) 4 2.2 2.7 2.7 2.2 3.1 3.4 3.6 3.4 3.7
I80B CoV (%) 21 4.0 3.4 3.4 3.8 4.2 4.8 4.6 4.2 4.3
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Table B-1 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
I80s Mean 4 17.74 17.16 16.41 15.57 14.56 13.51 12.51 11.84 10.43
I80s Mean 21 9.08 8.26 7.71 6.88 5.76 4.89 4.42 4.04 3.09
I80s Stdv 4 1.09 1.04 0.99 0.92 0.83 0.92 0.79 0.82 0.90
I80s Stdv 21 0.85 0.77 0.72 0.69 0.68 0.63 0.59 0.54 0.49
I80s CoV (%) 4 6.2 6.1 6.0 5.9 5.7 6.8 6.3 6.9 8.6
I80s CoV (%) 21 9.3 9.3 9.4 10.1 11.8 12.8 13.3 13.4 15.9

Jewell Mean 4 15.05 14.46 13.75 12.93 11.94 10.83 10.06 9.43 7.90
Jewell Mean 21 6.75 6.11 5.67 4.92 3.84 3.18 2.84 2.57 1.83
Jewell Stdv 4 0.64 0.67 0.64 0.60 0.62 0.64 0.60 0.58 0.51
Jewell Stdv 21 0.39 0.34 0.35 0.33 0.29 0.26 0.24 0.24 0.20
Jewell CoV (%) 4 4.3 4.6 4.6 4.7 5.2 5.9 5.9 6.1 6.5
Jewell CoV (%) 21 5.8 5.6 6.1 6.7 7.5 8.2 8.5 9.3 10.7
NW Mean 4 14.82 14.08 13.31 12.43 11.52 10.31 9.58 8.94 7.32
NW Mean 21 6.17 5.50 5.05 4.33 3.31 2.70 2.39 2.14 1.48
NW Stdv 4 0.64 0.76 0.70 0.71 0.71 0.69 0.63 0.58 0.52
NW Stdv 21 0.43 0.36 0.34 0.30 0.26 0.22 0.19 0.18 0.13
NW CoV (%) 4 4.3 5.4 5.3 5.7 6.2 6.7 6.6 6.5 7.1
NW CoV (%) 21 6.9 6.6 6.8 7.0 7.7 8.1 8.1 8.3 8.8
Rose Mean 4 16.39 16.34 15.65 14.96 14.47 13.07 12.29 11.66 10.33
Rose Mean 21 8.86 8.13 7.60 6.83 6.21 5.09 4.55 4.18 3.30
Rose Stdv 4 0.94 0.99 0.79 0.76 0.79 0.68 0.66 0.61 0.55
Rose Stdv 21 0.49 0.47 0.44 0.48 0.54 0.55 0.50 0.47 0.44
Rose CoV (%) 4 5.7 6.1 5.1 5.1 5.5 5.2 5.3 5.2 5.4
Rose CoV (%) 21 5.5 5.8 5.8 7.0 8.7 10.7 10.9 11.2 13.3
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Table B-2 Phase Angle Values for Control Mixes 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
6N Mean 4 3.97 7.24 7.80 9.48 10.32 11.40 12.44 13.22 15.07
6N Mean 21 14.38 16.26 17.44 19.56 21.39 24.18 26.14 28.87 31.92
6N Stdv 4 2.18 0.81 1.20 0.83 1.12 1.05 1.02 1.43 1.43
6N Stdv 21 1.34 1.28 1.28 1.46 2.12 2.10 1.87 2.55 1.86
6N CoV (%) 4 54.9 11.2 15.4 8.8 10.9 9.3 8.2 10.8 9.5
6N CoV (%) 21 9.3 7.9 7.3 7.4 9.9 8.7 7.2 8.8 5.8
218 Mean 4 5.23 6.95 7.81 9.23 9.85 10.99 12.25 13.62 15.60
218 Mean 21 14.68 16.55 17.85 20.28 23.45 25.39 27.17 32.60 35.79
218 Stdv 4 1.14 0.52 0.40 0.60 0.64 0.64 0.35 0.53 1.00
218 Stdv 21 0.67 0.43 0.39 0.47 2.04 0.76 0.85 1.16 1.38
218 CoV (%) 4 21.9 7.5 5.1 6.5 6.5 5.8 2.8 3.9 6.4
218 CoV (%) 21 4.6 2.6 2.2 2.3 8.7 3.0 3.1 3.5 3.9
235I Mean 4 6.30 8.31 9.41 10.97 12.09 13.75 14.58 15.97 18.03
235I Mean 21 16.23 18.08 19.40 21.69 24.98 26.97 30.61 32.54 33.28
235I Stdv 4 0.31 0.32 0.27 0.26 0.69 0.39 0.38 0.51 0.58
235I Stdv 21 0.40 0.21 0.23 0.33 1.56 1.04 2.09 1.67 1.91
235I CoV (%) 4 4.9 3.9 2.9 2.4 5.7 2.8 2.6 3.2 3.2
235I CoV (%) 21 2.4 1.2 1.2 1.5 6.2 3.9 6.8 5.1 5.7
235s Mean 4 8.03 9.56 10.59 12.32 13.23 14.28 16.22 17.05 18.89
235s Mean 21 16.00 17.80 18.84 20.92 23.97 26.00 29.01 30.60 32.50
235s Stdv 4 3.71 3.91 4.08 4.49 5.21 5.47 7.33 7.58 6.79
235s Stdv 21 3.21 3.10 2.73 2.39 3.91 2.77 4.08 2.52 1.67
235s CoV (%) 4 46.2 40.9 38.5 36.4 39.4 38.3 45.2 44.5 36.0
235s CoV (%) 21 20.1 17.4 14.5 11.4 16.3 10.7 14.1 8.2 5.1
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Table B-2 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
330B Mean 4 6.29 6.86 8.02 9.56 10.44 11.69 12.75 14.05 16.73
330B Mean 21 15.49 17.60 19.05 21.68 25.17 26.87 33.16 35.97 37.59
330B Stdv 4 0.70 0.21 0.11 0.04 0.49 0.43 0.71 0.62 1.76
330B Stdv 21 0.78 0.56 0.51 0.67 1.45 0.99 2.86 2.18 2.95
330B CoV (%) 4 11.2 3.1 1.4 0.5 4.6 3.7 5.6 4.4 10.5
330B CoV (%) 21 5.0 3.2 2.7 3.1 5.8 3.7 8.6 6.1 7.8
330I Mean 4 4.81 6.45 7.33 8.68 9.65 11.10 11.64 12.46 14.29
330I Mean 21 14.32 16.08 17.33 19.75 23.59 25.45 28.46 30.70 33.29
330I Stdv 4 1.30 0.22 0.30 0.34 0.19 0.76 0.38 0.28 0.75
330I Stdv 21 0.26 0.23 0.23 0.33 0.83 0.49 1.65 1.20 1.47
330I CoV (%) 4 26.9 3.4 4.0 3.9 2.0 6.8 3.3 2.3 5.3
330I CoV (%) 21 1.8 1.4 1.4 1.7 3.5 1.9 5.8 3.9 4.4
330s Mean 4 4.51 5.58 6.26 7.27 7.69 8.71 8.88 9.39 10.33
330s Mean 21 12.25 13.63 14.42 15.90 17.87 19.75 20.69 22.60 23.28
330s Stdv 4 0.89 0.37 0.41 0.71 0.79 0.88 0.86 1.37 1.30
330s Stdv 21 1.55 1.04 1.13 1.03 1.75 2.57 2.13 2.20 0.73
330I CoV (%) 4 19.7 6.6 6.5 9.8 10.2 10.1 9.7 14.6 12.6
330I CoV (%) 21 7.7 4.8 5.0 4.2 6.2 8.4 6.6 6.1 2.0
ALT Mean 4 2.57 5.33 6.50 7.77 8.38 10.00 10.40 10.99 12.51
ALT Mean 21 12.10 13.87 15.16 17.34 19.88 22.06 24.54 26.91 28.76
ALT Stdv 4 2.39 1.09 0.46 0.69 0.90 0.54 0.91 0.94 0.98
ALT Stdv 21 0.73 0.91 0.87 1.04 1.94 1.22 2.67 2.40 1.16
ALT CoV (%) 4 92.9 20.5 7.1 8.9 10.8 5.4 8.7 8.6 7.8
ALT CoV (%) 21 6.1 6.6 5.7 6.0 9.7 5.5 10.9 8.9 4.0
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Table B-2 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
Ded Mean 4 9.21 11.11 12.23 14.21 15.51 16.86 18.58 21.03 25.66
Ded Mean 21 19.82 21.93 23.18 25.36 28.18 30.15 33.05 35.28 38.25
Ded Stdv 4 0.50 0.56 0.54 0.50 0.84 0.34 0.65 1.39 3.50
Ded Stdv 21 0.45 0.71 0.58 0.62 1.29 0.65 0.78 1.20 1.06
Ded CoV (%) 4 5.5 5.1 4.4 3.5 5.4 2.0 3.5 6.6 13.6
Ded CoV (%) 21 2.3 3.3 2.5 2.5 4.6 2.2 2.3 3.4 2.8
F52 Mean 4 6.59 9.68 10.73 12.48 13.63 15.36 17.36 19.00 22.43
F52 Mean 21 18.90 20.39 21.56 23.96 28.59 29.57 31.78 33.86 35.11
F52 Stdv 4 2.28 0.37 0.41 0.50 0.99 0.55 1.02 1.17 0.74
F52 Stdv 21 0.87 0.84 0.74 0.79 1.69 1.38 0.85 0.82 1.71
F52 CoV (%) 4 34.6 3.9 3.8 4.0 7.2 3.6 5.9 6.2 3.3
F52 CoV (%) 21 4.6 4.1 3.4 3.3 5.9 4.7 2.7 2.4 4.9

HW4 Mean 4 7.01 8.58 9.82 11.22 12.28 13.83 14.84 16.90 20.07
HW4 Mean 21 16.48 17.85 18.52 19.53 22.57 22.78 23.31 25.12 25.60
HW4 Stdv 4 1.35 1.63 1.68 2.00 2.38 2.64 3.09 4.37 5.67
HW4 Stdv 21 4.55 3.78 3.58 2.70 1.97 1.19 1.75 2.61 3.68
HW4 CoV (%) 4 19.2 19.0 17.1 17.8 19.4 19.1 20.8 25.9 28.3
HW4 CoV (%) 21 17.5 13.9 13.1 9.7 6.0 3.7 5.5 7.8 11.8
I80B Mean 4 4.27 6.08 7.36 8.61 9.24 10.82 11.97 12.92 15.19
I80B Mean 21 13.26 15.54 16.87 19.26 21.70 24.49 27.78 29.53 32.50
I80B Stdv 4 1.39 0.54 0.18 0.36 0.65 0.50 0.71 0.45 1.23
I80B Stdv 21 0.72 0.50 0.51 0.50 1.06 0.82 1.61 0.92 1.92
I80B CoV (%) 4 32.4 8.8 2.5 4.2 7.1 4.6 5.9 3.5 8.1
I80B CoV (%) 21 5.4 3.2 3.0 2.6 4.9 3.3 5.8 3.1 5.9
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Table B-2 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
I80s Mean 4 2.94 5.09 6.12 7.27 8.07 9.24 9.45 10.21 11.10
I80s Mean 21 11.22 13.20 14.37 16.50 17.95 20.50 22.00 24.77 28.76
I80s Stdv 4 0.79 0.61 0.45 0.50 0.84 0.86 0.74 0.76 0.91
I80s Stdv 21 0.97 0.90 0.91 1.06 1.23 1.16 1.65 1.97 1.68
I80s CoV (%) 4 26.9 12.1 7.4 6.9 10.4 9.3 7.8 7.5 8.2
I80s CoV (%) 21 8.6 6.8 6.3 6.4 6.9 5.6 7.5 8.0 5.8

Jewell Mean 4 5.08 6.40 7.63 8.96 9.53 10.99 11.81 12.53 14.92
Jewell Mean 21 14.50 16.24 17.47 19.86 23.07 25.03 28.48 31.95 35.94
Jewell Stdv 4 0.37 0.41 0.33 0.42 0.71 0.99 0.75 0.71 0.88
Jewell Stdv 21 0.62 0.62 0.58 0.52 1.51 0.93 1.87 0.74 3.48
Jewell CoV (%) 4 7.2 6.4 4.4 4.7 7.4 9.0 6.3 5.7 5.9
Jewell CoV (%) 21 4.3 3.8 3.3 2.6 6.5 3.7 6.6 2.3 9.7
NW Mean 4 5.63 7.00 8.01 9.62 10.38 12.19 12.95 13.60 16.53
NW Mean 21 15.79 17.54 18.86 21.39 24.39 26.82 29.86 32.84 37.51
NW Stdv 4 0.68 0.21 0.25 0.38 0.57 0.40 0.42 0.51 1.66
NW Stdv 21 0.55 0.45 0.54 0.47 1.62 0.75 1.75 1.12 1.75
NW CoV (%) 4 12.0 3.0 3.2 3.9 5.5 3.2 3.2 3.8 10.0
NW CoV (%) 21 3.5 2.5 2.9 2.2 6.6 2.8 5.9 3.4 4.7
Rose Mean 4 3.31 4.62 5.68 6.59 7.19 8.23 8.27 8.27 9.15
Rose Mean 21 9.98 11.69 12.92 14.75 16.29 18.12 20.16 21.46 24.58
Rose Stdv 4 1.30 0.72 0.66 0.66 0.81 0.96 0.97 1.41 1.65
Rose Stdv 21 1.50 1.39 1.53 1.97 2.71 2.40 3.22 3.14 3.83
Rose CoV (%) 4 39.2 15.6 11.7 10.0 11.3 11.7 11.8 17.1 18.0
Rose CoV (%) 21 15.0 11.9 11.8 13.4 16.6 13.3 16.0 14.6 15.6
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Table B-3 Dynamic Modulus Results for Moisture Conditioned Mixes (GPa) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
6N Mean 4 12.09 11.35 10.80 9.81 8.95 7.63 6.56 6.44 5.09
6N Mean 21 5.84 5.21 4.77 4.04 3.37 2.57 2.21 1.94 1.35
6N Stdv 4 1.72 1.37 1.24 1.11 1.35 1.20 1.27 1.01 1.31
6N Stdv 21 0.62 0.55 0.45 0.41 0.37 0.29 0.26 0.21 0.14
6N CoV (%) 4 14.2 12.0 11.5 11.3 15.1 15.7 19.4 15.6 25.9
6N CoV (%) 21 10.6 10.5 9.4 10.0 11.0 11.4 11.7 10.9 10.1
218 Mean 4 14.65 13.62 13.17 12.30 11.55 10.09 9.28 8.75 7.33
218 Mean 21 7.41 6.65 6.07 5.22 4.41 3.32 2.82 2.52 1.62
218 Stdv 4 1.80 1.47 1.38 1.17 1.13 0.99 0.89 0.76 0.63
218 Stdv 21 0.84 0.69 0.60 0.50 0.45 0.34 0.38 0.30 0.41
218 CoV (%) 4 12.3 10.8 10.5 9.5 9.8 9.9 9.6 8.7 8.6
218 CoV (%) 21 11.3 10.4 9.9 9.6 10.3 10.3 13.4 12.1 25.3
235I Mean 4 12.70 11.73 11.06 10.13 9.19 7.85 7.17 6.63 5.39
235I Mean 21 5.34 4.81 4.38 3.70 2.99 2.24 1.90 1.70 1.20
235I Stdv 4 2.13 1.87 1.84 1.79 2.12 1.74 1.55 1.45 1.33
235I Stdv 21 0.52 0.53 0.54 0.46 0.41 0.33 0.27 0.27 0.20
235I CoV (%) 4 16.8 16.0 16.7 17.6 23.1 22.2 21.6 21.9 24.8
235I CoV (%) 21 9.7 11.1 12.3 12.5 13.6 14.7 14.3 15.7 16.2
235s Mean 4 15.88 14.69 14.00 12.89 12.16 10.36 9.40 8.76 7.23
235s Mean 21 7.40 6.62 6.07 5.22 4.38 3.40 2.88 2.65 1.81
235s Stdv 4 1.82 2.09 1.80 1.77 1.80 1.58 1.47 1.30 1.12
235s Stdv 21 0.75 0.67 0.61 0.56 0.54 0.42 0.36 0.43 0.28
235s CoV (%) 4 11.5 14.2 12.9 13.8 14.8 15.2 15.7 14.8 15.5
235s CoV (%) 21 10.1 10.2 10.0 10.7 12.2 12.2 12.6 16.0 15.4
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Table B-3 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
330B Mean 4 12.59 11.63 11.42 10.48 9.89 8.42 7.82 7.41 6.14
330B Mean 21 6.11 5.55 5.12 4.39 3.62 2.79 2.35 1.98 1.36
330B Stdv 4 1.92 1.83 1.38 1.60 1.36 1.09 0.82 0.79 0.67
330B Stdv 21 0.58 0.45 0.34 0.29 0.24 0.20 0.22 0.34 0.19
330B CoV (%) 4 15.2 15.7 12.1 15.2 13.8 12.9 10.5 10.7 10.9
330B CoV (%) 21 9.6 8.1 6.7 6.6 6.6 7.2 9.2 17.0 13.9
330I Mean 4 18.05 16.96 16.18 15.13 14.38 12.44 11.18 10.73 8.85
330I Mean 21 8.83 7.92 7.25 6.29 5.31 4.16 3.59 3.14 2.25
330I Stdv 4 1.76 1.70 1.46 1.40 1.41 1.25 1.09 0.87 1.08
330I Stdv 21 0.77 0.69 0.67 0.60 0.76 0.48 0.48 0.48 0.30
330I CoV (%) 4 9.8 10.0 9.0 9.3 9.8 10.0 9.7 8.1 12.2
330I CoV (%) 21 8.7 8.7 9.2 9.5 14.3 11.4 13.3 15.3 13.6
330s Mean 4 16.08 15.39 14.69 13.89 13.30 11.62 10.71 10.07 8.61
330s Mean 21 8.34 7.52 6.93 6.08 5.30 4.20 3.68 3.36 2.46
330s Stdv 4 1.90 1.87 1.72 1.71 1.79 1.81 1.79 1.82 1.68
330s Stdv 21 1.21 1.11 1.01 0.96 0.99 0.85 0.77 0.76 0.67
330I CoV (%) 4 11.8 12.1 11.7 12.3 13.5 15.5 16.7 18.1 19.6
330I CoV (%) 21 14.5 14.7 14.6 15.8 18.7 20.3 20.9 22.6 27.3
ALT Mean 4 20.54 19.34 18.92 17.72 16.88 14.95 13.93 13.12 11.08
ALT Mean 21 11.87 10.70 9.95 8.75 7.67 6.08 5.34 4.81 3.47
ALT Stdv 4 1.08 0.95 1.40 1.33 1.21 1.18 1.12 1.12 1.41
ALT Stdv 21 1.03 0.92 0.84 0.74 0.68 0.56 0.48 0.46 0.38
ALT CoV (%) 4 5.3 4.9 7.4 7.5 7.2 7.9 8.1 8.6 12.8
ALT CoV (%) 21 8.7 8.6 8.4 8.5 8.8 9.2 9.1 9.5 10.9
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Table B-3 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
Ded Mean 4 8.42 7.73 7.33 6.72 5.94 4.62 4.43 3.99 3.12
Ded Mean 21 3.70 3.25 2.95 2.43 1.97 1.38 1.15 0.89 0.58
Ded Stdv 4 0.50 0.46 0.36 0.33 0.60 0.74 0.41 0.73 0.62
Ded Stdv 21 0.36 0.31 0.28 0.23 0.20 0.20 0.21 0.24 0.20
Ded CoV (%) 4 5.9 6.0 4.9 4.9 10.1 15.9 9.3 18.2 19.9
Ded CoV (%) 21 9.6 9.6 9.4 9.5 10.3 14.5 18.6 26.6 34.7
F52 Mean 4 12.97 11.95 11.40 10.46 9.32 7.55 6.88 6.12 4.50
F52 Mean 21 5.55 4.89 4.42 3.67 2.92 2.12 1.72 1.37 0.94
F52 Stdv 4 0.98 0.66 0.58 0.49 0.62 0.65 0.64 1.04 1.34
F52 Stdv 21 0.34 0.28 0.27 0.25 0.19 0.17 0.17 0.15 0.11
F52 CoV (%) 4 7.6 5.5 5.1 4.7 6.6 8.6 9.2 16.9 29.7
F52 CoV (%) 21 6.2 5.7 6.1 6.7 6.7 7.9 9.7 10.9 11.8

HW4 Mean 4 11.81 10.90 10.26 9.33 8.54 7.22 6.62 6.07 5.21
HW4 Mean 21 4.86 4.28 3.88 3.26 2.61 1.95 1.68 1.47 0.96
HW4 Stdv 4 1.98 1.87 1.83 1.76 1.80 1.84 1.89 2.03 2.02
HW4 Stdv 21 0.95 0.87 0.81 0.75 0.68 0.54 0.49 0.48 0.34
HW4 CoV (%) 4 16.8 17.2 17.8 18.9 21.1 25.5 28.6 33.5 38.7
HW4 CoV (%) 21 19.5 20.3 21.0 23.1 26.1 27.9 29.1 32.6 35.2
I80B Mean 4 16.33 15.71 15.16 14.13 13.45 11.87 10.89 10.00 8.65
I80B Mean 21 7.83 7.40 6.88 6.02 5.22 4.06 3.58 3.01 2.14
I80B Stdv 4 1.27 1.59 1.54 1.58 1.49 1.50 1.49 1.73 1.37
I80B Stdv 21 1.35 1.69 1.60 1.44 1.31 1.06 0.98 0.66 0.54
I80B CoV (%) 4 7.8 10.1 10.2 11.2 11.0 12.6 13.7 17.3 15.8
I80B CoV (%) 21 17.2 22.8 23.3 23.9 25.1 26.2 27.5 21.8 25.0



www.manaraa.com

  

 

 

 

203 

Table B-3 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
I80s Mean 4 16.53 15.16 14.96 13.99 13.36 11.65 10.78 10.27 8.68
I80s Mean 21 8.25 7.70 7.19 6.24 5.44 4.28 3.78 3.43 2.46
I80s Stdv 4 2.35 2.44 2.10 2.02 2.07 1.89 1.87 1.67 1.50
I80s Stdv 21 0.59 0.47 0.36 0.30 0.30 0.24 0.24 0.17 0.15
I80s CoV (%) 4 14.2 16.1 14.0 14.4 15.5 16.3 17.4 16.2 17.3
I80s CoV (%) 21 7.1 6.1 5.1 4.8 5.5 5.5 6.3 5.0 6.1

Jewell Mean 4 15.88 14.95 14.29 13.01 12.67 10.86 9.98 9.45 7.77
Jewell Mean 21 8.08 7.28 6.67 5.80 4.93 3.79 3.32 2.94 2.06
Jewell Stdv 4 2.55 2.37 2.15 2.75 2.11 2.07 1.80 1.76 1.19
Jewell Stdv 21 1.29 1.12 1.07 0.98 0.91 0.75 0.67 0.62 0.48
Jewell CoV (%) 4 16.0 15.9 15.0 21.1 16.6 19.0 18.0 18.6 15.3
Jewell CoV (%) 21 16.0 15.4 16.0 17.0 18.4 19.8 20.2 21.0 23.2
NW Mean 4 13.45 12.56 11.94 11.15 10.58 9.14 8.33 7.86 6.41
NW Mean 21 6.51 5.86 5.38 4.63 3.87 2.94 2.54 2.24 1.54
NW Stdv 4 2.66 2.45 2.27 2.12 2.07 1.84 1.71 1.56 1.42
NW Stdv 21 0.44 0.37 0.34 0.29 0.29 0.22 0.19 0.19 0.16
NW CoV (%) 4 19.8 19.5 19.0 19.0 19.6 20.1 20.6 19.9 22.1
NW CoV (%) 21 6.7 6.4 6.3 6.2 7.4 7.3 7.3 8.5 10.7
Rose Mean 4 15.44 14.49 13.76 13.31 12.59 11.02 10.20 9.79 8.17
Rose Mean 21 7.52 6.86 6.39 5.63 4.88 3.84 3.40 3.07 2.27
Rose Stdv 4 2.50 2.58 1.76 2.46 2.43 2.04 2.00 1.96 1.43
Rose Stdv 21 0.62 0.59 0.53 0.45 0.44 0.37 0.32 0.27 0.23
Rose CoV (%) 4 16.2 17.8 12.8 18.4 19.3 18.6 19.6 20.0 17.6
Rose CoV (%) 21 8.2 8.6 8.3 7.9 9.0 9.7 9.4 8.8 10.0
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Table B-4 Phase Angle Values for Moisture Conditioned Mixes 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
6N Mean 4 7.27 8.74 9.74 11.43 12.92 13.34 14.07 15.19 20.50
6N Mean 21 16.33 18.19 19.54 22.02 24.07 27.09 29.71 33.13 34.43
6N Stdv 4 1.18 0.89 0.96 1.10 1.59 1.52 3.02 3.42 3.24
6N Stdv 21 0.88 0.57 0.57 0.62 0.93 1.35 1.25 2.16 1.45
6N CoV (%) 4 16.2 10.2 9.9 9.6 12.3 11.4 21.5 22.5 15.8
6N CoV (%) 21 5.4 3.1 2.9 2.8 3.9 5.0 4.2 6.5 4.2
218 Mean 4 6.22 7.03 8.48 9.87 10.46 12.07 13.03 14.48 19.31
218 Mean 21 15.15 16.82 18.24 20.62 22.94 25.56 28.05 33.21 35.73
218 Stdv 4 0.63 1.64 0.53 0.52 0.59 0.89 0.78 0.92 4.15
218 Stdv 21 0.97 0.74 0.63 0.65 0.78 1.69 1.63 3.40 4.46
218 CoV (%) 4 10.2 23.2 6.3 5.3 5.7 7.3 6.0 6.4 21.5
218 CoV (%) 21 6.4 4.4 3.5 3.1 3.4 6.6 5.8 10.2 12.5
235I Mean 4 7.93 9.67 10.91 12.49 14.82 15.36 17.29 18.96 21.62
235I Mean 21 17.54 19.62 20.96 23.31 26.10 28.55 31.32 34.08 34.32
235I Stdv 4 1.16 1.12 1.25 1.39 3.80 1.77 2.45 2.94 2.80
235I Stdv 21 1.25 0.93 0.88 0.72 1.02 0.48 1.27 1.95 1.52
235I CoV (%) 4 14.7 11.5 11.5 11.1 25.6 11.6 14.1 15.5 12.9
235I CoV (%) 21 7.1 4.7 4.2 3.1 3.9 1.7 4.1 5.7 4.4
235s Mean 4 7.42 8.93 9.83 11.55 12.72 14.10 14.96 16.70 19.48
235s Mean 21 15.91 17.64 18.88 20.99 22.95 26.13 27.86 31.16 32.16
235s Stdv 4 0.78 0.87 0.96 0.77 0.75 1.14 1.10 1.56 2.02
235s Stdv 21 1.47 0.70 0.81 0.69 1.03 2.14 1.24 2.44 2.45
235s CoV (%) 4 10.6 9.7 9.8 6.7 5.9 8.1 7.3 9.3 10.4
235s CoV (%) 21 9.3 4.0 4.3 3.3 4.5 8.2 4.5 7.8 7.6
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Table B-4 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
330B Mean 4 6.18 7.47 8.61 9.93 10.90 11.56 13.29 15.74 21.42
330B Mean 21 16.40 17.53 19.05 21.70 24.33 26.91 30.73 36.68 37.56
330B Stdv 4 0.68 0.65 0.42 0.70 0.59 1.71 1.82 1.37 3.51
330B Stdv 21 0.62 0.69 0.54 0.54 0.49 1.85 1.93 9.58 4.00
330B CoV (%) 4 11.1 8.7 4.8 7.1 5.5 14.8 13.7 8.7 16.4
330B CoV (%) 21 3.8 4.0 2.9 2.5 2.0 6.9 6.3 26.1 10.7
330I Mean 4 5.90 7.24 8.06 9.53 10.27 11.68 12.34 13.64 19.25
330I Mean 21 14.51 16.05 17.37 19.69 22.92 25.08 27.00 30.27 33.24
330I Stdv 4 0.82 0.32 0.32 0.50 0.68 0.86 0.78 0.57 5.00
330I Stdv 21 1.10 0.98 1.05 1.15 3.37 1.64 2.06 1.60 2.11
330I CoV (%) 4 14.0 4.4 4.0 5.2 6.6 7.3 6.3 4.2 26.0
330I CoV (%) 21 7.5 6.1 6.0 5.8 14.7 6.5 7.6 5.3 6.3
330s Mean 4 5.40 6.51 7.59 9.21 10.15 11.13 11.63 12.75 15.84
330s Mean 21 13.59 15.07 16.18 18.16 19.93 23.03 23.32 26.71 29.42
330s Stdv 4 1.32 1.49 1.22 1.21 1.67 1.38 1.77 2.13 4.84
330s Stdv 21 1.98 1.77 1.82 1.91 2.36 2.54 4.43 2.85 3.04
330I CoV (%) 4 24.4 22.9 16.1 13.1 16.4 12.4 15.2 16.7 30.6
330I CoV (%) 21 14.6 11.8 11.2 10.5 11.9 11.0 19.0 10.7 10.3
ALT Mean 4 5.78 6.82 7.58 8.78 9.35 11.25 12.01 13.21 17.27
ALT Mean 21 12.68 14.30 15.48 17.86 20.08 23.01 25.79 27.65 30.09
ALT Stdv 4 1.50 0.69 0.63 0.66 0.64 0.80 0.77 0.90 5.56
ALT Stdv 21 0.76 0.60 0.54 0.48 0.82 1.01 1.21 0.75 0.97
ALT CoV (%) 4 26.0 10.1 8.3 7.5 6.8 7.2 6.4 6.8 32.2
ALT CoV (%) 21 6.0 4.2 3.5 2.7 4.1 4.4 4.7 2.7 3.2
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Table B-4 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
Ded Mean 4 10.35 11.68 12.94 14.59 16.63 16.33 17.83 22.01 31.94
Ded Mean 21 20.25 21.65 22.79 25.13 27.85 30.58 33.11 36.06 42.01
Ded Stdv 4 1.26 1.39 1.39 1.56 2.40 2.90 2.75 2.57 11.78
Ded Stdv 21 1.49 0.61 0.75 0.58 1.10 1.79 2.75 2.81 12.15
Ded CoV (%) 4 12.2 11.9 10.8 10.7 14.4 17.8 15.4 11.7 36.9
Ded CoV (%) 21 7.4 2.8 3.3 2.3 3.9 5.9 8.3 7.8 28.9
F52 Mean 4 9.08 10.69 11.68 13.70 15.43 16.10 18.61 20.25 37.36
F52 Mean 21 19.85 21.50 23.07 25.35 28.63 31.02 34.38 37.22 36.88
F52 Stdv 4 0.88 0.72 0.73 1.09 1.34 2.13 2.20 2.99 30.68
F52 Stdv 21 1.01 0.97 0.95 1.10 1.58 1.51 2.92 3.64 2.84
F52 CoV (%) 4 9.7 6.7 6.2 7.9 8.7 13.3 11.8 14.8 82.1
F52 CoV (%) 21 5.1 4.5 4.1 4.3 5.5 4.9 8.5 9.8 7.7

HW4 Mean 4 8.55 10.32 11.33 13.05 15.29 15.38 17.07 18.43 21.92
HW4 Mean 21 18.96 20.85 22.47 24.77 28.17 30.10 32.32 34.94 37.15
HW4 Stdv 4 1.53 1.32 1.45 1.71 2.83 2.37 3.05 3.18 3.96
HW4 Stdv 21 2.57 2.61 2.85 2.71 2.93 3.40 2.86 2.96 2.25
HW4 CoV (%) 4 17.9 12.8 12.8 13.1 18.5 15.4 17.9 17.3 18.1
HW4 CoV (%) 21 13.5 12.5 12.7 11.0 10.4 11.3 8.9 8.5 6.1
I80B Mean 4 5.22 7.19 8.22 9.44 10.28 11.77 12.32 12.89 15.69
I80B Mean 21 12.91 15.33 17.06 19.57 22.02 24.43 26.84 29.37 33.93
I80B Stdv 4 0.85 0.75 0.93 0.90 1.12 1.06 1.59 3.26 2.85
I80B Stdv 21 2.52 1.20 1.50 1.74 1.65 1.88 2.10 2.48 3.27
I80B CoV (%) 4 16.2 10.4 11.3 9.5 10.9 9.0 12.9 25.3 18.2
I80B CoV (%) 21 19.5 7.8 8.8 8.9 7.5 7.7 7.8 8.4 9.6
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Table B-4 (continued) 

Mix Name Sample Number Temp 25Hz 15Hz 10Hz 5Hz 3Hz 1Hz 0.5Hz 0.3Hz 0.1Hz
I80s Mean 4 5.08 6.59 7.81 9.00 9.72 10.74 11.08 12.90 16.64
I80s Mean 21 12.80 15.03 16.24 18.64 20.72 23.04 25.40 28.65 34.16
I80s Stdv 4 1.56 0.66 0.54 0.61 0.61 0.86 2.69 1.89 4.13
I80s Stdv 21 3.43 0.38 0.41 0.67 0.97 0.79 1.05 2.81 5.29
I80s CoV (%) 4 30.7 10.1 6.9 6.8 6.2 8.0 24.3 14.7 24.8
I80s CoV (%) 21 26.8 2.5 2.5 3.6 4.7 3.4 4.1 9.8 15.5

Jewell Mean 4 5.95 7.00 8.51 9.85 10.97 11.61 12.13 13.27 18.78
Jewell Mean 21 15.03 16.63 18.00 20.48 23.06 25.39 28.59 30.94 33.28
Jewell Stdv 4 1.08 1.98 1.08 1.22 1.53 1.86 2.17 2.23 4.43
Jewell Stdv 21 0.70 0.72 0.65 0.75 0.93 1.31 2.17 1.86 1.59
Jewell CoV (%) 4 18.2 28.3 12.7 12.3 13.9 16.1 17.9 16.8 23.6
Jewell CoV (%) 21 4.7 4.3 3.6 3.6 4.0 5.2 7.6 6.0 4.8
NW Mean 4 7.06 8.17 9.06 10.70 11.43 13.04 14.15 14.94 19.36
NW Mean 21 15.31 17.33 18.58 21.10 23.83 25.98 29.17 32.09 34.57
NW Stdv 4 1.29 1.07 0.98 1.04 1.17 1.63 1.47 1.95 3.04
NW Stdv 21 1.05 0.69 0.85 0.60 1.20 0.86 1.36 1.64 1.10
NW CoV (%) 4 18.2 13.1 10.8 9.7 10.2 12.5 10.4 13.0 15.7
NW CoV (%) 21 6.9 4.0 4.6 2.8 5.0 3.3 4.7 5.1 3.2
Rose Mean 4 4.79 6.22 6.92 8.83 9.63 10.57 11.56 13.15 16.44
Rose Mean 21 13.00 14.91 16.33 18.47 20.37 22.64 25.04 28.37 30.89
Rose Stdv 4 1.14 1.21 1.92 0.74 0.85 0.81 1.51 0.73 1.93
Rose Stdv 21 1.28 1.04 1.41 1.09 1.39 1.93 2.40 2.11 2.66
Rose CoV (%) 4 23.7 19.5 27.8 8.3 8.8 7.7 13.1 5.6 11.7
Rose CoV (%) 21 9.8 7.0 8.6 5.9 6.8 8.5 9.6 7.4 8.6
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APPENDIX C INDIRECT TENSILE STRENGTH RESULTS 

Table C-1 Indirect Tensile Strength Test Results 

Mix 
Control Moisture Conditioned 

Sample Thickness 
(mm) 

Force 
(kN) 

Stress 
(kPa) Sample Thickness 

(mm) 
Force 
(kN) 

Stress 
(kPa) 

6N 3 62.48 9.37 955.1 1 62.95 8.43 853.0 
6N 4 62.45 9.74 993.3 2 62.64 7.29 740.6 
6N 6 62.38 10.06 1026.3 5 62.60 8.58 872.1 
6N 8 62.49 9.83 1001.0 7 62.81 9.16 928.7 
6N 10 62.47 9.79 998.2 9 62.72 8.67 880.4 
6N Mean 62.45 9.76 994.8 Mean 62.74 8.43 854.9 
6N Stdev 0.04 0.25 25.6 Stdev 0.14 0.69 69.7 
6N COV 0.07 2.52 2.6 COV 0.22 8.23 8.2 
218 1 62.40 12.36 1260.7 2 62.70 7.14 724.6 
218 5 62.39 12.10 1234.7 3 62.57 8.44 858.3 
218 7 62.67 11.95 1214.1 4 62.50 8.57 873.3 
218 8 63.24 10.79 1085.9 6 62.64 9.03 917.7 
218 10 62.64 12.16 1236.3 9 62.60 9.07 922.4 
218 Mean 62.67 11.87 1206.3 Mean 62.60 8.45 859.2 
218 Stdev 0.35 0.62 69.3 Stdev 0.07 0.78 80.2 
218 COV 0.55 5.26 5.7 COV 0.12 9.28 9.3 
235I 4 62.50 12.10 1232.2 1 62.65 10.92 1109.9 
235I 6 62.32 12.01 1227.3 2 62.45 11.51 1172.9 
235I 8 62.37 11.98 1222.3 3 62.38 11.75 1199.6 
235I 9 62.38 11.41 1164.9 5 62.37 11.48 1171.3 
235I 10 62.38 11.51 1175.0 7 62.40 11.75 1198.7 
235I Mean 62.39 11.80 1204.3 Mean 62.45 11.48 1170.5 
235I Stdev 0.07 0.31 31.8 Stdev 0.12 0.34 36.5 
235I COV 0.11 2.67 2.6 COV 0.19 2.95 3.1 
235S 3 62.40 12.10 1234.2 1 62.48 12.24 1246.8 
235S 5 62.74 10.90 1106.5 2 62.60 12.45 1266.4 
235S 6 62.41 11.51 1173.9 4 62.57 12.18 1239.0 
235S 9 62.62 11.68 1187.6 7 62.74 11.81 1198.6 
235S 10 62.84 11.56 1171.2 8 63.02 10.72 1083.0 
235S Mean 62.60 11.55 1174.7 Mean 62.68 11.88 1206.8 
235S Stdev 0.20 0.43 45.8 Stdev 0.21 0.69 73.4 
235S COV 0.31 3.71 3.9 COV 0.34 5.79 6.1 
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Table C-1 (continued) 

Mix 
Control Moisture Conditioned 

Sample Thickness 
(mm) 

Force 
(kN) 

Stress 
(kPa) Sample Thickness 

(mm) 
Force 
(kN) 

Stress 
(kPa) 

330B 1 62.30 9.14 934.3 2 62.51 7.66 780.1 
330B 5 62.43 10.35 1055.7 3 62.34 7.47 762.4 
330B 6 62.31 10.47 1069.5 4 62.50 7.86 800.3 
330B 9 62.41 9.29 947.2 7 62.56 7.16 728.7 
330B 10 62.40 10.45 1065.9 8 62.59 8.04 817.6 
330B Mean 62.37 9.94 1014.5 Mean 62.50 7.64 777.8 
330B Stdev 0.06 0.67 67.7 Stdev 0.10 0.34 34.4 
330B COV 0.10 6.69 6.7 COV 0.15 4.47 4.4 
330I 2 62.50 12.02 1224.8 1 62.54 11.05 1124.5 
330I 4 62.44 12.02 1225.6 3 62.68 11.11 1128.0 
330I 5 62.39 12.06 1230.5 7 62.53 11.58 1178.8 
330I 6 62.09 12.00 1230.8 8 62.62 11.23 1141.5 
330I 9 62.51 10.83 1102.6 10 62.55 11.36 1155.9 
330I Mean 62.39 11.79 1202.9 Mean 62.58 11.26 1145.7 
330I Stdev 0.17 0.54 56.1 Stdev 0.06 0.21 22.2 
330I COV 0.28 4.56 4.7 COV 0.10 1.89 1.9 
330S 1 62.46 12.56 1280.0 2 62.52 12.33 1255.5 
330S 3 62.51 12.24 1246.3 4 62.40 12.28 1252.9 
330S 6 62.34 12.33 1259.4 5 62.21 12.16 1244.5 
330S 8 62.26 12.42 1270.1 7 62.24 12.10 1237.9 
330S 9 62.31 12.50 1277.5 10 62.44 12.29 1253.0 
330S Mean 62.38 12.41 1266.6 Mean 62.36 12.23 1248.8 
330S Stdev 0.11 0.13 13.9 Stdev 0.13 0.10 7.3 
330S COV 0.17 1.04 1.1 COV 0.21 0.78 0.6 
ALT 1 62.43 13.23 1349.3 2 62.48 13.20 1345.1 
ALT 5 62.40 13.14 1341.0 3 62.44 13.17 1343.3 
ALT 6 62.42 13.22 1347.8 4 62.46 13.07 1332.1 
ALT 7 62.28 13.07 1336.3 9 62.50 13.16 1340.8 
ALT 8 62.34 13.14 1341.9 10 62.47 13.12 1336.9 
ALT Mean 62.37 13.16 1343.3 Mean 62.47 13.15 1339.6 
ALT Stdev 0.06 0.06 5.3 Stdev 0.02 0.05 5.2 
ALT COV 0.10 0.49 0.4 COV 0.04 0.39 0.4 
DED 1 62.34 12.21 1247.2 2 62.54 8.81 896.5 
DED 3 62.47 11.30 1151.8 4 62.66 8.71 885.4 
DED 7 62.35 11.66 1190.8 5 62.46 8.65 882.1 
DED 9 62.39 11.32 1155.3 6 62.57 8.66 881.3 
DED 10 62.29 10.90 1114.1 8 62.59 8.06 819.9 
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Table C-1 (continued) 

Mix 
Control Moisture Conditioned 

Sample Thickness 
(mm) 

Force 
(kN) 

Stress 
(kPa) Sample Thickness 

(mm) 
Force 
(kN) 

Stress 
(kPa) 

DED Mean 62.37 11.48 1171.8 Mean 62.56 8.58 873.0 
DED Stdev 0.07 0.49 50.1 Stdev 0.07 0.30 30.3 
DED COV 0.11 4.27 4.3 COV 0.12 3.45 3.5 
F52 2 62.56 8.55 870.0 1 62.75 7.98 809.7 
F52 3 62.58 6.34 644.9 4 62.49 8.21 836.0 
F52 4 62.40 9.01 919.5 7 62.67 6.80 691.2 
F52 5 62.47 8.89 905.5 8 62.95 7.51 759.6 
F52 6 62.46 8.41 856.8 10 62.89 8.01 810.5 
F52 Mean 62.49 8.24 839.3 Mean 62.75 7.70 781.4 
F52 Stdev 0.07 1.09 111.6 Stdev 0.18 0.56 57.5 
F52 COV 0.12 13.23 13.3 COV 0.29 7.31 7.4 

HW4 2 63.50 8.46 847.9 1 64.31 7.61 753.2 
HW4 4 62.37 12.06 1231.0 3 64.25 7.63 756.1 
HW4 6 62.40 12.15 1239.4 5 62.77 11.23 1138.5 
HW4 7 62.42 11.84 1208.0 8 62.77 10.52 1067.4 
HW4 9 62.38 11.30 1153.3 10 62.47 8.21 836.2 
HW4 Mean 62.61 11.16 1135.9 Mean 63.31 9.04 910.3 
HW4 Stdev 0.50 1.55 164.5 Stdev 0.89 1.71 180.8 
HW4 COV 0.79 13.86 14.5 COV 1.41 18.93 19.9 
I80B 2 62.50 12.84 1307.5 1 62.78 12.15 1231.7 
I80B 3 62.55 12.60 1282.5 4 62.67 12.31 1250.6 
I80B 5 62.05 12.61 1293.6 6 62.65 12.20 1239.8 
I80B 7 62.06 12.56 1288.1 8 62.94 12.23 1236.6 
I80B 9 62.02 12.50 1282.8 10 62.61 12.57 1278.2 
I80B Mean 62.24 12.62 1290.9 Mean 62.73 12.29 1247.4 
I80B Stdev 0.26 0.13 10.3 Stdev 0.13 0.17 18.5 
I80B COV 0.43 1.02 0.8 COV 0.21 1.36 1.5 
I80S 5 62.72 12.26 1244.6 1 62.98 9.89 1000.0 
I80S 6 62.55 12.16 1238.0 2 62.87 9.82 994.2 
I80S 7 62.69 12.28 1247.1 3 63.26 9.13 918.7 
I80S 8 62.61 12.04 1224.5 4 62.88 10.18 1030.4 
I80S 10 62.58 12.39 1260.8 9 63.45 9.59 962.1 
I80S Mean 62.63 12.23 1243.0 Mean 63.09 9.72 981.1 
I80S Stdev 0.07 0.13 13.3 Stdev 0.26 0.39 42.5 
I80S COV 0.12 1.08 1.1 COV 0.41 4.04 4.3 

Jewell 2 62.56 11.26 1146.1 1 62.54 11.02 1122.1 
Jewell 6 62.49 11.91 1213.5 3 62.67 9.32 947.2 
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Table C-1 (continued) 

Mix 
Control Moisture Conditioned 

Sample Thickness 
(mm) 

Force 
(kN) 

Stress 
(kPa) Sample Thickness 

(mm) 
Force 
(kN) 

Stress 
(kPa) 

Jewell 7 62.48 11.51 1173.1 4 62.88 11.05 1119.1 
Jewell 9 62.45 11.55 1176.9 5 62.76 11.54 1170.7 
Jewell 10 62.46 11.56 1178.0 8 62.75 11.59 1175.6 
Jewell Mean 62.49 11.56 1177.5 Mean 62.72 10.91 1107.0 
Jewell Stdev 0.04 0.23 24.0 Stdev 0.13 0.92 93.1 
Jewell COV 0.07 2.00 2.0 COV 0.20 8.46 8.4 
NW 2 62.55 8.90 906.0 1 63.46 7.61 763.7 
NW 4 62.72 8.73 886.1 3 62.66 8.50 863.7 
NW 5 62.62 9.07 921.9 6 62.77 6.97 706.8 
NW 7 62.51 9.20 936.8 8 62.65 7.18 729.7 
NW 10 62.43 9.03 920.4 9 62.58 8.68 882.6 
NW Mean 62.57 8.98 914.3 Mean 62.82 7.79 789.3 
NW Stdev 0.11 0.18 19.1 Stdev 0.36 0.77 79.5 
NW COV 0.18 1.98 2.1 COV 0.58 9.88 10.1 
Rose 2 62.42 11.43 1166.2 1 62.53 12.11 1233.2 
Rose 3 62.48 12.13 1236.0 6 62.40 12.09 1233.8 
Rose 4 62.34 12.09 1235.1 8 62.32 11.86 1211.9 
Rose 5 62.39 12.14 1238.7 9 62.45 12.06 1229.2 
Rose 7 62.33 12.02 1228.0 10 62.47 11.77 1199.7 
Rose Mean 62.39 11.96 1220.8 Mean 62.43 11.98 1221.6 
Rose Stdev 0.06 0.30 30.8 Stdev 0.08 0.15 15.1 
Rose COV 0.10 2.51 2.5 COV 0.13 1.28 1.2 
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